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ABSTRACT
Fine-tuning pre-trained models with task-specific data can produce

customized models effective for downstream tasks. However, op-

erating large-scale such fine-tuning tasks in real time in the data

center faces non-trivial challenges, including unpredictable task ar-

rival and system environment dynamics, complex deadline-driven

fine-tuning scheduling, and intertwined task pricing and cost man-

agement. In this paper, targeting the popular Low-Rank Adaptation

(LoRA) fine-tuning technique, we present the design and study of

a novel auction-based mechanism to jointly schedule and price

LoRA tasks in an online manner. We first model the social welfare

maximization problem as an integer program for the fine-tuning

service provider, capturing all the aforementioned challenges. Then,

to solve this NP-hard problem online, we equivalently reformulate

this original problem into a schedule selection problem, where each

schedule corresponds to a concrete pre-specified operation plan

over time for a task. We can thus design a polynomial-time online

approximation algorithm via the online primal-dual method to de-

termine the schedule, and with the dual variables, also determine

the pricing for each admitted task. We rigorously prove the compet-

itiveness of our online approach against the offline optimum, and

prove the economic properties of truthfulness and individual ratio-

nality regarding pricing. Finally, we conduct extensive experiments

and have validated the substantial advantages of our approach

compared to existing methods.
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1 INTRODUCTION
Fine-tuning refers to the process of using relatively small task-

specific datasets to adapt a large model pre-trained on extensive

datasets to downstream tasks. This approach retains the rich knowl-

edge encapsulated within the pre-trained model while avoiding the

design of new models and training from scratch, thus saving signif-

icant time and costs. For instance, one can fine-tune the pre-trained

Large Language Model (LLM) Bert or GPT to machine transla-

tion and semantic question answering via corresponding datasets

[23, 31]. Low-Rank Adaption (LoRA) [2, 6, 15, 29] is among the most

widely employed fine-tuning methods, as exemplified by the more

than 1100 LLaMA-related models fine-tuned by LoRA on Hugging

Face [9]. LoRA injects an “adapter” composed of two low-rank ma-

trices into each “transformer layer” [24] of the pre-trained model,

where only parameters in the adapters need to be updated and other

parameters stay unchanged. For example, for GPT3, compared to

fine-tuning the entire model, LoRA reduces the number of trainable

parameters from 175B to 37M and the GPU memory consumption

from 1.2TB to 350GB, while achieving a similar accuracy [6].

It is yet non-trivial for the cloud fine-tuning service to operate and
manage large-scale LoRA-based fine-tuning tasks from the users,

due to the following unique and fundamental challenges.

First, as the fine-tuning tasks arrive unpredictably, it is difficult

to continuously schedule them for execution in real time in a dy-

namic data center environment whose operational cost can also be

constantly changing [5, 21, 27]. Each task needs to be controlled

to potentially suspend and resume execution alternately, while en-

suring sufficient fine-tuning with minimum incurred cost in the

long term before a pre-specified deadline that may exist. Some

tasks may require data pre-processing (e.g., labeling, and clean-

ing) which also needs to be coordinated and completed before the

fine-tuning process starts, especially when the fine-tuning service

https://doi.org/10.1145/3673038.3673083
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allows outsourcing such efforts [17]. LoRA tasks can actually share

the parameters of the pre-trained model [28] and only fine-tune

an individual adapter for each task, demanding careful inter-task

management for high training throughput and resource utilization.

All of these factors need to be comprehensively handled for the

cloud data center which often has heterogeneous GPUs equipped.

Second, it is not straightforward to appropriately price the re-

ceived fine-tuning tasks while ensuring the profitability and the

agile adaptability to the ever-changing market demand and supply.

The de facto fixed pricing, as adopted by some providers [10], often

fail to meet these requirements. Auction can be a more effective

approach, with the fine-tuning service as the auctioneer and each

fine-tuning task as a bid. Yet, existing auction design cannot be

directly used in this scenario, where the bids arrive sequentially

and need to be processed irrevocably on the fly, unlike a typical

auction setting where all bids often come simultaneously; further,

the winning-bid selection is intrinsically intertwined with the corre-

sponding task execution, e.g., a particular task may bid a high price,

but it may be impossible to schedule it for the best performance

with the minimum cost if it is admitted, and vice versa. This also

lifts the difficulty for designing novel auction mechanisms with

desired economic properties such as truthfulness (e.g., a bid has no

motivation to lie about its bidding price) and individual rationality

(e.g., a bid incurs no loss to itself even when it loses in the auction).

To the best of our knowledge, none of the existing work has ad-

dressed both of the aforementioned challenges for fine-tuning tasks.

Titan [4] is a scheduler tailored for fine-tuning tasks; however, it tar-

gets the offline scenario and ignores the pricing, deadline, and data

pre-processing issues. Other conventional deep learning task sched-

ulers [11, 14, 16, 19, 20, 22, 25, 30, 32] focus on traditional metrics in-

cluding time efficiency, training throughput efficiency, fairness, and

hence are not suitable for solving our problem. Eris [18] prices and

schedules deep learning tasks based on auction mechanisms, which

could be the most similar to the problem we are investigating. Yet,

it ignores the performance improvement brought by multi-LoRA

pre-trained model sharing, the ever-changing operational cost, and

the data pre-processing decisions in the marketplace.

In this paper, we demonstrate a rigorous algorithmic study of

the auction-based, online joint scheduling and pricing mechanism

tailored to the fine-tuning service. We make several contributions:

• We model and formulate a long-term optimization problem

to maximize the social welfare of the entire system, i.e., the

utilities of both the cloud fine-tuning service and the LoRA

fine-tuning tasks. This problem is an integer program, prov-

ably intractable even in the offline setting. Our formulation

grasps all the aforementioned challenges and is general, with

only mild or almost no assumption on all the inputs such as

the input dynamics and heterogeneities.

• We design a smart reformulation to equivalently transform

the original problem into a schedule selection problem,where

a schedule is a concrete pre-specified operation plan of a

fine-tuning task over time. To solve this new problem, we

further design an online primal-dual algorithm to dynami-

cally conduct the admission control and decide the schedule

for each task as it arrives at the service.

• We also design the pricing mechanism for each admitted

task, i.e., the payment that each winning bid needs to make
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Figure 2: Multi-LoRA.

to the fine-tuning service, using the dual variables that are

carefully and continuously updated as tasks arrive and the

relevant inputs obtained from the primal problem.

• We rigorously characterize and prove multiple theoretical

guarantees, including the NP-hardness of the problem, the

polynomial-time complexity of our algorithms, the competi-

tive performance of our online algorithms against the offline

optimum, and the auction properties of truthfulness and

individual rationality of our pricing mechanism.

• We conduct extensive trace-driven experiments. Our pro-

posed approach consistently outperforms baselines in vari-

ous settings. Specifically, in the high workload scenario, our

approach improves social welfare by 48.99%, 151.57%, and

184.94% compared to three baseline algorithms.

2 MODELING AND FORMULATION
2.1 System Settings and Models
Cloud System: We consider a service provider that operates a

cloud data center or a GPU cluster of a set [𝐾] = {1, 2, · · · , 𝐾} of
GPU compute nodes for executing fine-tuning tasks submitted by

the end users. Without loss of generality, we consider the entire

system operating in slotted time [𝑇 ] = {1, 2, · · · ,𝑇 }. Each compute

node 𝑘 ∈ [𝐾] in the cloud has its computation capacity𝐶𝑘𝑝 in terms

of the maximum number of data samples that can be processed per

single time slot, and has its GPU memory capacity 𝐶𝑘𝑚 in GB.

Fine-Tuning Tasks: A LoRA [6] fine-tuning task, as shown in

Figure 1, uses two low-rankmatrices to approximate the parameters

that need to be updated for the dense layer when fine-tuning pre-

trained neural networks. That is, for each “transformer layer” [24],

let𝑊0 ∈ R𝑑×𝑘 be the parameters on the pre-trained dense layer, and

Δ𝑊 be the parameter update (i.e., the adapter). Then, the resulting
fine-tuned parameters can be represented as𝑊 =𝑊0 + Δ𝑊 . LoRA

approximates the update by Δ𝑊 = 𝐵𝐴, where 𝐵 ∈ R𝑑×𝑟 , 𝐴 ∈ R𝑟×𝑘 ,
and the rank 𝑟 ≪ min(𝑑, 𝑘). During fine-tuning, the forward result

of the dense layer is calculated as ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 ,
and the pre-trained weights𝑊0 can stay unchanged and only the

gradient updates of the matrices 𝐴 and 𝐵 need to be computed

during the backward propagation. Since 𝑟 ≪ min(𝑑, 𝑘), LoRA sig-

nificantly reduces the number of trainable parameters. As shown

in Figure 2, if multiple tasks fine-tune the same pre-trained model,

then these tasks can share the pre-trained model and just have

their own separate adapters [28], in order to further reduce GPU

memory usage and improve training efficiency.



Online Scheduling and Pricing for Multi-LoRA Fine-Tuning Tasks ICPP ’24, August 12–15, 2024, Gotland, Sweden

We use [𝐼 ] = {1, 2, ..., 𝐼 } to refer to the set of fine-tuning tasks.

The fine-tuning task 𝑖 can be represented as {𝑎𝑖 , 𝑑𝑖 ,D𝑖 , 𝑟𝑖 , 𝑀𝑖 , 𝑓𝑖 , 𝑏𝑖 },
where 𝑎𝑖 is the arrival time of the task 𝑖; 𝑑𝑖 is the deadline no later

than which the task 𝑖 needs to be finished; D𝑖 refers to the training

dataset used for fine-tuning; 𝑟𝑖 is the GPU memory requirement

for the task 𝑖; 𝑀𝑖 is the total cumulative amount of computation

required for sufficiently fine-tuning the task 𝑖; 𝑓𝑖 indicates whether

the task 𝑖 needs data pre-processing; and 𝑏𝑖 is the bidding price for

the task 𝑖 . Data pre-processing and bidding will be further elabo-

rated next. When executing the fine-tuning task 𝑖 on the compute

node 𝑘 , we denote by 𝑠𝑖𝑘 the amount of computation that can be

done per single time slot, and denote by 𝑒𝑖𝑘𝑡 the operational cost

(e.g., energy consumption) at the time slot 𝑡 . In this paper, we focus

on the case where every task fine-tunes the same pre-trained model

whose size is 𝑟𝑏 , and up to one replica of this pre-trained model

needs to be kept on each compute node, as in the LoRA weight-

sharing situation. Different “zones” within the cloud data center

can be set up for tasks fine-tuning different pre-trained models.

Auction-Based Pricing: The cloud fine-tuning service acts as

the auctioneer and each fine-tuning task acts as a bid. Note that

we consider each user (bidder) submitting only one task (bid); a

user that submits multiple tasks can be essentially considered as

multiple virtual users. For the task 𝑖 , the bidding price 𝑏𝑖 refers

to the money that the corresponding user is willing to pay to the

service for executing this task. For each bid, the service decides

whether to choose the bid as a winning bid. If it is a winning bid, it

means that the the service provider admits the task for execution

and the user makes the payment 𝑝𝑖 (note that 𝑝𝑖 is determined by

the service provider and may not equal 𝑏𝑖 ); if not, then the service

provider declines the task and the user makes no payment. Thus,

𝑝𝑖 is the service provider’s pricing for the task 𝑖 . We also define

and analyze the desired economic properties of truthfulness and

individual rationality for our auction later in this paper.

Data Pre-Processing: Each fine-tuning task contains its dataset,
and real-world cloud fine-tuning services [17] often allow outsourc-

ing the data pre-processing (e.g., labeling, and cleaning) to third-

party labor vendors. Sometimes, such pre-processing is a must as the

cloud fine-tuning service may have strict format requirements for

the training data [8]. We consider a marketplace of multiple labor

vendors indexed by [𝑁 ] = {1, 2, ..., 𝑁 }. As the fine-tuning task 𝑖 is

admitted and requests data pre-processing, the service will firstly

check the price 𝑞𝑖𝑛 that each labor vendor 𝑛 charges and the pro-

cessing delay ℎ𝑖𝑛 that each labor vendor 𝑛 takes for pre-processing

the task 𝑖’s data, and then select and use one and only one labor

vendor for this task. The service will pay the selected labor vendor

correspondingly. The data pre-processing needs to be completed

before the corresponding fine-tuning task starts to execute.

Control Decisions:As each fine-tuning task 𝑖 arrives at the time

slot 𝑎𝑖 , the service provider responds immediately and makes the

following control decisions online: (i) Whether or not to admit the

task 𝑖 for execution (i.e., select the bid 𝑖 as a winning bid), denoted

by 𝑢𝑖 ; (ii) Whether or not to execute the task 𝑖 on the compute

node 𝑘 at the time slot 𝑡 , ∀𝑡 ≥ 𝑎𝑖 , denoted by 𝑥𝑖𝑘𝑡 ; (iii) Whether

or not to choose and use the labor vendor 𝑛 for the task 𝑖’s data

pre-processing, denoted by 𝑧𝑖𝑛 ; (iv) Payment 𝑝𝑖 that the user needs

to make to the cloud fine-tuning service.
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Figure 3: Fine-tuning service workflow.

SystemWorkflow: Overall, the system workflow is shown in

Figure 3, consisting of multiple steps: (i) Users submit fine-tuning

tasks as bids, where different bids may arrive at different moments;

(ii) As soon as each bid arrives, the fine-tuning service decides

whether the bid is a winning bid; (iii) Jointly with the winning-bid

determination, the service also decides the labor vendor for data

pre-processing (if requested by the bid), the execution plan of the

task, and the payment to charge; (iv) The user makes the payment

to the service; (v) The service executes the data pre-processing

and the fine-tuning process as planned, and returns the result to

the user at completion. Depending on the agreement between the

service and the users, “(iv)” may occur before or after “(v)”.

2.2 Problem Formulation
Social Welfare:We define the social welfare as our optimization

objective, which is the sum of each user’s utility and the service

provider’s utility, following the conventions as in a typical auction.

A user’s utility is her true valuation of her fine-tuning task minus

her payment to the fine-tuning service. Thus, all users’ utility is

𝑈𝑟 =
∑
𝑖𝑈𝑖 =

∑
𝑖 (𝑏𝑖 − 𝑝𝑖 )𝑢𝑖 . (1)

Note that 𝑏𝑖 also represents the true valuation, as we will prove

the truthfulness of our mechanism later. The service provider’s

utility is the payment received from the users minus the sum of

the expense it pays to the data pre-processing labor vendors and

its own operational cost of executing the fine-tuning tasks. That is

𝑈𝑐 =
∑
𝑖𝑝𝑖𝑢𝑖 −

∑
𝑖

∑
𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −∑

𝑖

∑
𝑘

∑
𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 . (2)

Based on these, we have the social welfare as

𝑈 = 𝑈𝑟 +𝑈𝑐 =
∑
𝑖𝑏𝑖𝑢𝑖 −

∑
𝑖

∑
𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −∑

𝑖

∑
𝑘

∑
𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 . (3)

Note that the payment is canceled out, aligned with existing auction

research; yet, in our algorithms, we still need to decide the payment

for each winning bid as part of our auction outcome.

Problem Formulation: We formulate our multi-LoRA fine-

tuning scheduling and pricing problem that is to be solved by the

fine-tuning service provider as follows:

𝑃 : max

∑
𝑖𝑏𝑖𝑢𝑖 −

∑
𝑖

∑
𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −∑

𝑖

∑
𝑘

∑
𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 (4)

s.t. 𝑓𝑖𝑢𝑖 ≤
∑
𝑛𝑧𝑖𝑛 ≤ 1,∀𝑖, (4a)∑

𝑘𝑥𝑖𝑘𝑡 ≤ 1, ∀𝑖, 𝑡, (4b)

(𝑎𝑖 + 𝑓𝑖
∑
𝑛ℎ𝑖𝑛𝑧𝑖𝑛)𝑥𝑖𝑘𝑡 ≤ 𝑥𝑖𝑘𝑡 𝑡,∀𝑖, 𝑘, 𝑡 (4c)

𝑥𝑖𝑘𝑡 𝑡 ≤ 𝑑𝑖 ,∀𝑖, 𝑘, 𝑡, (4d)
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∑
𝑡

∑
𝑘𝑠𝑖𝑘𝑥𝑖𝑘𝑡 ≥ 𝑀𝑖𝑢𝑖 ,∀𝑖, (4e)∑

𝑖𝑠𝑖𝑘𝑥𝑖𝑘𝑡 ≤ 𝐶𝑘𝑝 ,∀𝑘, 𝑡, (4f)∑
𝑖𝑟𝑖𝑥𝑖𝑘𝑡 + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡, (4g)

𝑢𝑖 ∈ {0, 1}, 𝑥𝑖𝑘𝑡 ∈ {0, 1}, 𝑧𝑖𝑛 ∈ {0, 1},∀𝑖, 𝑘, 𝑡, 𝑛. (4h)

We maximize the social welfare. Constraint (4a) ensures that for

each task, up to one labor vendor is selected if the task is admitted

and needs data pre-processing. Constraint (4b) ensures that each

task at each time slot runs on no more than one compute node.

Constraint (4c) ensures that each task is only executed after it ar-

rives at the system and finishes its data pre-processing. Constraint

(4d) ensures that each task is only executed before its deadline.

Constraint (4e) guarantees enough computation cumulatively to

complete the task. Constraints (4f) and (4g) enforce the compu-

tation capacity and the memory capacity on each compute node,

respectively. Constraint (4h) specifies the domains of the control

variables. Unless otherwise noted, the scopes for our indices are

𝑖 ∈ [𝐼 ], 𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇 ] and 𝑛 ∈ [𝑁 ]. Our problem is provably

intractable; see Section 4.1 for details.

3 ALGORITHM DESIGN
3.1 Overview and Rationale
Our idea is to firstly reformulate the original problem 𝑃 equiva-

lently into a schedule selection problem 𝑃1. Rather than dynamically

determining when to execute a task on which compute note, we

generate a series of static schedules for the task as it arrives, where

each schedule is a concrete plan of executing the task on a particu-

lar compute node at a particular (and unnecessarily consecutive)

set of time lots, and then select the best schedule for the task. The

schedules of a task can cover all the possibilities of how to execute

this task, while respecting the constraints. Each schedule of a task

uniquely determines task admission, labor vendor selection, and

task execution; and vice versa. We can thus solve the schedule

selection problem and then recover the corresponding solution

to the original problem. This method simplifies our formulation,

and enables us to just focus on dynamically making one type of

decision—schedule selection—instead of simultaneously making

the multiple types of decisions as in the original problem.

Then, we note that, to design an online algorithm for the sched-

ule selection problem 𝑃1 with provably-guaranteed performance,

we can derive its Lagrange dual problem 𝐷1 and design an online

primal-dual algorithm [1]. That is, as a task arrives, i,e., the con-

straints of the primal problem (5) and the dual problem (6) appear

dynamically, we always carefully maintain a feasible solution for

the primal problem and a feasible solution for the dual problem, so

that the changes in the corresponding objective function values in-

curred by the two feasible solutions possess a certain “relationship”.

According to weak duality, the objective function value of the dual

problem is always an upper bound of the optimal objective function

value of the primal problem, and hence we can guarantee the theo-

retical performance of the online algorithm by firstly connecting

our online solutions to the dual objective via the aforementioned

relationship and then further to the (offline) primal optimum.

With such a primal-dual algorithm, we further design pricing

to ensure the economic properties of truthfulness and individual

rationality, as typically desired in auctions. Truthfulness ensures

that every bid has no motivation to lie about its bidding price, and

individual rationality ensures that every bid has no loss regardless

of the auction outcome. To that end, we design the payment of a

winning bid in our auction using the values of the dual variables.

Dual variables can be considered as “shadow prices" [3] for the com-

putation and the memory resources indicated in the constraints

of the primal problem, where the shadow price represents the in-

crease of the dual problem’s objective value per unit increase in

the amount of the resource. Intuitively, we set the payment based

on the consumed resources, which is independent of its bidding

price, thereby achieving the desired economic properties (while the

winning-bid selection still depends on the bidding prices).

3.2 Problem Reformulation
Schedule Selection: We reformulate the problem (4) equivalently

into a schedule selection problem (5). Here, we define a schedule

𝑙 of the task 𝑖 as an assignment of a set of concrete values to the

decision variables {𝑢𝑖 , {𝑥𝑖𝑘𝑡 }𝑘,𝑡 , {𝑧𝑖𝑛}𝑛} for the task 𝑖 , satisfying
Constraints (4a)-(4e). Then, the problem (4) is rewritten as

𝑃1 : max

∑
𝑖

∑
𝑙∈𝜁𝑖𝑏𝑖𝑙𝑥𝑖𝑙 (5)

s.t.

∑
𝑙𝑥𝑖𝑙 ≤ 1,∀𝑖, (5a)∑
𝑖

∑
𝑙 :𝑡 ∈𝑙𝑠𝑘𝑡 (𝑖𝑙)𝑥𝑖𝑙 ≤ 𝐶𝑘𝑝 ,∀𝑘, 𝑡, (5b)∑

𝑖

∑
𝑙 :𝑡 ∈𝑙𝑟𝑘𝑡 (𝑖𝑙)𝑥𝑖𝑙 + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡, (5c)

𝑥𝑖𝑙 ∈ {0, 1},∀𝑖, 𝑙 ∈ 𝜁𝑖 , (5d)

where the binary variable 𝑥𝑖𝑙 represents whether the task 𝑖 is sched-

uled for execution using the schedule 𝑙 , and 𝜁𝑖 is the set of all the

feasible schedules for the task 𝑖 satisfying Constraints (4a)-(4e).

We introduce some additional notations. We use 𝑏𝑖𝑙 to denote the

increment of the objective value of the problem (4) when using the

schedule 𝑙 to execute the task 𝑖 . Formally, 𝑏𝑖𝑙 = 𝑏𝑖𝑢𝑖 −
∑
𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −∑

𝑘
∑
𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 , where values of the variables are taken from the

schedule 𝑙 . Also, denote 𝑠𝑘𝑡 (𝑖𝑙) and 𝑟𝑘𝑡 (𝑖𝑙) as the computation and

the memory consumption on the compute node 𝑘 at the time slot 𝑡 ,

incurred by using the schedule 𝑙 to execute the task 𝑖 , which are

calculated as 𝑠𝑘𝑡 (𝑖𝑙) = 𝑠𝑖𝑘𝑥𝑖𝑘𝑡 and 𝑟𝑘𝑡 (𝑖𝑙) = 𝑟𝑖𝑥𝑖𝑘𝑡 with 𝑥𝑖𝑘𝑡 ∈ 𝑙 ,
respectively. For the ease of representation, we also use 𝑡 ∈ 𝑙 to
indicate that the time slot 𝑡 is one of the time slots as specified in

schedule 𝑙 , i.e., ∑𝑘𝑥𝑖𝑘𝑡 = 1. We inevitably note that the problem (4)

has a solution space of the size 2
𝐼+𝐼𝐾𝑇+𝐼𝑁

, while the the problem (5)

has a solution space of the size 2
𝐼 ·21+𝐾𝑇+𝑁

; fortunately, by carefully

designing our online algorithm, we can control the algorithm to

run in polynomial time as shown and proved later.

Dual Problem: To design the online algorithm, we adopt the

primal-dual idea. The domain of the decision variable 𝑥𝑖𝑙 is then

relaxed to 𝑥𝑖𝑙 ∈ [0, 1]. We thus write the Lagrange dual problem of

the primal problem (5) as

𝐷1 : min

∑
𝑖𝜇𝑖 +

∑
𝑘

∑
𝑡𝐶𝑘𝑝𝜆𝑘𝑡 +

∑
𝑘

∑
𝑡 (𝐶𝑘𝑚 − 𝑟𝑏 )𝜑𝑘𝑡 (6)

s.t. 𝜇𝑖 ≥ 𝑏𝑖𝑙 −
∑
𝑘

∑
𝑡 :𝑡 ∈𝑙 (𝑠𝑘𝑡 (𝑖𝑙)𝜆𝑘𝑡 + 𝑟𝑘𝑡 (𝑖𝑙)𝜑𝑘𝑡 ),∀𝑖, 𝑙 ∈ 𝜁𝑖 ,

(6a)

𝜇𝑖 ≥ 0, 𝜆𝑘𝑡 ≥ 0, 𝜑𝑘𝑡 ≥ 0,∀𝑖, 𝑘, 𝑡, (6b)

where 𝜇𝑖 , 𝜆𝑘𝑡 and 𝜑𝑘𝑡 are the dual variables associated with Con-

straints (5a), (5b), and (5c), respectively.
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3.3 Online Scheduling
Online Primal-Dual Algorithm:We define the values of the dual

variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 as

𝜆
(𝑖 )
𝑘𝑡

= 𝜆
(𝑖−1)
𝑘𝑡

(1 + 𝑠𝑘𝑡 (𝑖𝑙)
𝐶𝑘𝑝

) + 𝛼 (
¯𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙)
𝐶𝑘𝑝

), (7)

𝜑
(𝑖 )
𝑘𝑡

= 𝜑
(𝑖−1)
𝑘𝑡

(1 + 𝑟𝑘𝑡 (𝑖𝑙)
𝐶𝑘𝑚 − 𝑟𝑏

) + 𝛽 (
¯𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙)
𝐶𝑘𝑚 − 𝑟𝑏

), (8)

where
¯𝑏𝑖𝑙 =

𝑏𝑖𝑙∑
𝑘
∑
𝑡𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) . Intuitively,

¯𝑏𝑖𝑙 can be expressed as

the social welfare improvement incurred by using per unit resource

per single time slot. We use 𝜆
(𝑖 )
𝑘𝑡

and 𝜑
(𝑖 )
𝑘𝑡

to represent the value of

𝜆𝑘𝑡 and 𝜑𝑘𝑡 after the online algorithm handles the task 𝑖 . Such 𝜆
(𝑖 )
𝑘𝑡

and 𝜑
(𝑖 )
𝑘𝑡

have the following properties: (i) They are initialized to

zero and then increase as the resource consumption increases; (ii)

If a schedule decision causes the cumulative usage of resources to

exceed the capacity, i.e., to violate Constraint (4f) or (4g), then no

more tasks will be scheduled on the compute node 𝑘 at the time

slot 𝑡 , as shown in Lemma 2 in Appendix; (iii) They are carefully

designed so that our online algorithms can achieve provably-good

performance, as shown later in Theorem 5.

We select the schedule for the task 𝑖 as

𝑙𝑖 = arg max

𝑙∈𝜁𝑖
{𝐹 (𝑖𝑙)}, (9)

where 𝐹 (𝑖𝑙) is defined as

𝐹 (𝑖𝑙) = 𝑏𝑖𝑙 − max

(𝑘,𝑡 ) ∈𝑙
{𝜆 (𝑖−1)
𝑘𝑡

}∑𝑘∑𝑡𝑠𝑘𝑡 (𝑖𝑙) − max

(𝑘,𝑡 ) ∈𝑙
{𝜑 (𝑖−1)
𝑘𝑡

}∑𝑘∑𝑡𝑟𝑘𝑡 (𝑖𝑙).
(10)

Here, (𝑘, 𝑡) ∈ 𝑙 refers to the compute node 𝑘 and the time slot 𝑡

where 𝑥𝑖𝑘𝑡 = 1 in schedule 𝑙 . Note that there may exist multiple

pairs of (𝑘, 𝑡) that make 𝑥𝑖𝑘𝑡 = 1 in the schedule 𝑙 , as a task may

execute at multiple time slots. We set the dual variable 𝜇𝑖 as

𝜇𝑖 = max{0, 𝐹 (𝑖𝑙)}. (11)

This means that if the schedule 𝑙𝑖 returned by (9) leads to a negative

value of 𝐹 (𝑖𝑙), then we just reject the task and set 𝜇𝑖 to zero; in

contrast, if 𝜇𝑖 > 0, then the service admits the task 𝑖 and executes

it according to the control decisions as specified in the schedule 𝑙𝑖 .

Algorithm 1 is our online schedule selection algorithm. Line 1

initializes the dual variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 to zero. Upon the arrival

of each task 𝑖 , Line 3 checks whether the task 𝑖’s dataset needs

pre-processing, and if so, Line 4 collects the expense and the delay

of each labor vendor. Line 5 invokes Algorithm 2, which will be

described next, to find the schedule 𝑙𝑖 consisting of all the control

decisions for the task 𝑖 . Lines 6-7 indicate that if 𝐹 (𝑖𝑙) > 0, then we

update the dual variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 ; otherwise, we reject the task

𝑖 in Line 13. Line 8 checks whether there are sufficient resources

to execute the task 𝑖 . Formally, we check whether the condition∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖′𝑙) ≤ 𝐶𝑘𝑝 and

∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖′𝑙) + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡

holds. If there are sufficient resources, then Line 9 admits the task

𝑖 and executes it according to the schedule 𝑙𝑖 ; otherwise, it rejects

the task 𝑖 in Line 12. Line 10 pays 𝑞𝑖𝑛 to the labor vendor 𝑛 if it is

selected. Line 11 charges the user 𝑖 at the payment in (14).

Algorithm 1: Online Task Scheduling Algorithm

Input: {{𝑎𝑖 , 𝑑𝑖 ,D𝑖 , 𝑟𝑖 , 𝑀𝑖 , 𝑓𝑖 , 𝑏𝑖 }}𝑖 , 𝑟𝑏 ,𝐶𝑘𝑚,𝐶𝑘𝑝

1 Initialize 𝜆
(0)
𝑘𝑡

= 0, 𝜑
(0)
𝑘𝑡

= 0,∀𝑘, 𝑡 ;
2 for task 𝑖 do
3 if 𝑓𝑖 > 0 then
4 Collect {𝑞𝑖𝑛, ℎ𝑖𝑛}𝑛 of each labor vendor;

5 Invoke Algorithm 2 to generate 𝑙𝑖 = {{𝑥𝑖𝑘𝑡 }𝑘,𝑡 , {𝑧𝑖𝑛}𝑛}
and 𝐹 (𝑖𝑙);

6 if 𝐹 (𝑖𝑙) > 0 then
7 Update 𝜆𝑘𝑡 and 𝜑𝑘𝑡 according to (7) and (8);

8 if enough resources then
9 Admit task 𝑖 , i.e., set 𝑢𝑖 = 1, and execute it using

𝑙𝑖 ;

10 Pay 𝑞𝑖𝑛 to labor vendor 𝑛 with 𝑧𝑖𝑛 = 1 ;

11 Charge 𝑝𝑖 from task 𝑖 according to (14);

12 else Reject task 𝑖 , i.e., set 𝑢𝑖 = 0;

13 else Reject task 𝑖 , i.e., set 𝑢𝑖 = 0;

Optimal Schedule: The next issue is how to find the optimal

schedule defined in (9) for a single task. From a high-level perspec-

tive, the essence of (9) is to determine the labor vendor (if the task

𝑖 needs data-processing) and the concrete time slots to execute the

task 𝑖 , given the value of the dual variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 after our al-

gorithm handles the task 𝑖 −1 while satisfying Constraints (4a)-(4e).

Therefore, for each pair of the expense 𝑝𝑖𝑛 and the delay ℎ𝑖𝑛 of the

labor vendor 𝑛, finding the optimal schedule can be formulated as

the following optimization problem:

min

∑
𝑘

∑
𝑡𝑥𝑖𝑘𝑡 (𝑠𝑖𝑘 ˆ𝜆 + 𝑟𝑖𝜑 + 𝑒𝑖𝑘𝑡 ) (12)

s.t.

∑
𝑘

∑
𝑡𝑠𝑖𝑘𝑥𝑖𝑘𝑡 ≥ 𝑀𝑖 , (12a)∑

𝑘𝑥𝑖𝑘𝑡 ≤ 1,∀𝑡, (12b)

ˆ𝜆 ≥ 𝑥𝑖𝑘𝑡𝜆𝑘𝑡 ,∀𝑘, 𝑡, (12c)

𝜑 ≥ 𝑥𝑖𝑘𝑡𝜑𝑘𝑡 ,∀𝑘, 𝑡, (12d)

𝑥𝑖𝑘𝑡 ∈ {0, 1}, 𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛, 𝑑𝑖 ], ˆ𝜆 ≥ 0, 𝜑 ≥ 0,∀𝑘, 𝑡, (12e)

where 𝑥𝑖𝑘𝑡 , and 𝑡 are integer decision variables. Note that the sub-

script 𝑖 is given and fixed here, as we only target the task 𝑖 . For

each labor vendor 𝑛, we solve the problem (12) to obtain the task

execution decision {𝑥𝑖𝑘𝑡 }, and then select the labor vendor that

achieves the lowest objective value of the problem (12) to obtain

the labor vendor selection decision {𝑧𝑖𝑛}.
We use dynamic programming to find the optimal solution to the

problem (12). When scheduling task 𝑖 , for a labor vendor 𝑛 with 𝑝𝑖𝑛
andℎ𝑖𝑛 , let 𝑑𝑝 [𝑡,𝑤] be the minimum objective value of the problem

(12) achieved by allocating a total amount of𝑤 computation for the

task 𝑖 until the time slot 𝑡 , where 𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛, 𝑑𝑖 ],𝑤 ∈ [0,𝑊𝑖 ],𝑊𝑖
is the computation amount required by task 𝑖 . The update rule is

𝑑𝑝 [𝑡,𝑤] = min

{
𝑑𝑝 [𝑡 − 1,𝑤],min

𝑘

{
𝑑𝑝 [𝑡 − 1,𝑤 − 𝑠𝑖𝑘 ] + Δ𝑘𝑡 }

}
,

(13)

where Δ𝑘𝑡 is the increment of the objective value of the problem

(12) incurred by executing the task 𝑖 on the compute node 𝑘 at 𝑡 .
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Algorithm 2: Per-Task Schedule Selection Algorithm

Input: {𝑎𝑖 , 𝑑𝑖 ,D𝑖 , 𝑟𝑖 , 𝑀𝑖 , 𝑓𝑖 , 𝑏𝑖 }, {𝜆 (𝑖−1)
𝑘𝑡

}, {𝜑 (𝑖−1)
𝑘𝑡

}
Output: 𝑙 = {{𝑥𝑖𝑘𝑡 }𝑘,𝑡 , {𝑧𝑖𝑛}𝑛}, 𝐹 (𝑖𝑙)

1 Initialize 𝜇𝑖 = 0, 𝑥𝑖𝑘𝑡 = 0, 𝑧𝑖𝑛 = 0,∀𝑘, 𝑡, 𝑛;
2 for labor vendor 𝑛 ∈ [𝑁 ] do
3 𝑙𝑛 = findSchedule(𝑎𝑖 , 𝑑𝑖 , ℎ𝑖𝑛, {𝜆 (𝑖−1)

𝑘𝑡
}, {𝜑 (𝑖−1)

𝑘𝑡
},𝑊𝑖 ) ;

4 Calculate 𝐹 (𝑖𝑙𝑛) according to (10);

5 𝑛∗ = arg max𝑛{𝐹 (𝑖𝑙𝑛)}, 𝑧𝑖𝑛∗ = 1, 𝐹 (𝑖𝑙) = max𝑛{𝐹 (𝑖𝑙𝑛)};
6 Function

findSchedule(𝑎𝑖 , 𝑑𝑖 , ℎ𝑖𝑛, {𝜆 (𝑖−1)
𝑘𝑡

}, {𝜑 (𝑖−1)
𝑘𝑡

},𝑊𝑖):
7 Initialize 𝑑𝑝 [𝑡,𝑤] = ∞,∀𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛, 𝑑𝑖 ],𝑤 ∈ [1,𝑊𝑖 ];

𝑑𝑝 [𝑡, 0] = 0,∀𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛, 𝑑𝑖 ]; ˆ𝜆𝑘𝑡 = 0, 𝜑𝑘𝑡 = 0, ∀𝑘, 𝑡 ;
8 for𝑤 ∈ [1,𝑊𝑖 ] do
9 for 𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛 + 1, 𝑑𝑖 ] do
10 for 𝑘 ∈ [𝐾] do
11 Calculate Δ𝑘𝑡 = 𝑠𝑖𝑘 ˆ𝜆𝑘𝑡 + 𝑟𝑖𝜑𝑘𝑡 + 𝑒𝑖𝑘𝑡 based

on 𝑑𝑝 [𝑡 − 1,𝑤 − 𝑠𝑖𝑘 ] and 𝜆
(𝑖−1)
𝑘𝑡

, 𝜑
(𝑖−1)
𝑘𝑡

;

12 𝑑𝑝 [𝑡,𝑤] = min

{
𝑑𝑝 [𝑡 − 1,𝑤],min𝑘

{
𝑑𝑝 [𝑡 −

1,𝑤 − 𝑠𝑖𝑘 ] + Δ𝑘𝑡 }
}

13 return schedule that achieves 𝑑𝑝 [𝑑𝑖 ,𝑊𝑖 ]
14 return 𝑙𝑖𝑛∗ and 𝐹 (𝑖𝑙);

Algorithm 2 is the dynamic programming process for finding the

best schedule for a given task, and is invoked by Algorithm 1. Specif-

ically, Line 1 is the initialization. Lines 2-4 find the optimal task

execution plan for each feasible labor vendor selection. Line 5 indi-

cates we select the labor vendor that achieves the maximum 𝐹 (𝑖𝑙𝑛).
Lines 6-13 describe the specific steps of dynamic programming. Re-

call that we use 𝑑𝑝 [𝑡,𝑤] to represent the minimum objective value

of the problem (12) achieved by a total amount of𝑤 computation

for the task 𝑖 until the time slot 𝑡 . Line 7 initializes the values in the

dynamic programming (DP) table. Lines 11 calculates Δ𝑘𝑡 for each
labor vendor 𝑛. Line 12 describes the update rule of 𝑑𝑝 [𝑡,𝑤]. Line
13 returns the task execution plan that achieves 𝑑𝑝 [𝑑𝑖 ,𝑊𝑖 ]. Line
14 returns the optimal task execution plan across all labor vendors

and the corresponding value of 𝐹 (𝑖𝑙).

3.4 Online Pricing
If a task 𝑖 is admitted and executed using a schedule 𝑙 , i.e., 𝐹 (𝑖𝑙) > 0,

then the user 𝑖 needs to pay 𝑝𝑖 to the service.We design the payment

𝑝𝑖 as

𝑝𝑖 =
∑
𝑛𝑧𝑖𝑛𝑝𝑖𝑛 + max

(𝑘,𝑡 ) ∈𝑙
{𝜆 (𝑖−1)
𝑘𝑡

}∑𝑘∑𝑡𝑠𝑖𝑘𝑥𝑖𝑘𝑡
+ max

(𝑘,𝑡 ) ∈𝑙
{𝜑 (𝑖−1)
𝑘𝑡

}∑𝑘∑𝑡𝑟𝑖𝑥𝑖𝑘𝑡 , (14)

where the values of 𝑥𝑖𝑘𝑡 and 𝑧𝑖𝑛 are taken from the schedule 𝑙 . Recall

that (𝑘, 𝑡) ∈ 𝑙 refers those 𝑘 and 𝑡 with 𝑥𝑖𝑘𝑡 = 1 in the schedule 𝑙 . We

treat max(𝑘,𝑡 ) ∈𝑙 {𝜆
(𝑖−1)
𝑘𝑡

} and max(𝑘,𝑡 ) ∈𝑙 {𝜑
(𝑖−1)
𝑘𝑡

} as the marginal

price of computation and memory resources after handling the task

𝑖 − 1, respectively. The bidding price affects whether a bid wins in

the auction or not, and if it wins, we set the corresponding payment

for this bid as only based on its consumed resources, not depending

on the bidding price any more. We note that the payment can also

be written as 𝑝𝑖 =
∑
𝑛𝑧𝑖𝑛𝑝𝑖𝑛 + max(𝑘,𝑡 ) ∈𝑙 {𝜆

(𝑖−1)
𝑘𝑡

}∑𝑘∑𝑡𝑠𝑘𝑡 (𝑖𝑙) +
max(𝑘,𝑡 ) ∈𝑙 {𝜑

(𝑖−1)
𝑘𝑡

}∑𝑘∑𝑡𝑟𝑘𝑡 (𝑖𝑙). As shown in Theorems 3 and 4,

this payment design ensures the expected economic properties of

truthfulness and individual rationality.

4 PERFORMANCE ANALYSIS
4.1 Intractability

Theorem 1. Our problem (4) is NP-hard.

Proof. Our problem contains the well-known 0-1 knapsack

problem, and is thus NP-hard. To see this, we focus on the de-

cision variables 𝑢𝑖 , ∀𝑖 . Joining Constraints (4e) and (4f), we get∑
𝑖𝑀𝑖𝑢𝑖 ≤ 𝑇 · ∑𝑘𝐶𝑘𝑝 . That is, for the “item” 𝑖 , we consider 𝑀𝑖 as

the “weight” and 𝑏𝑖 in the objective function as the “value”; we also

consider𝑇 ·∑𝑘𝐶𝑘𝑝 as the capacity of the “knapsack” in terms of the

total tolerable weight. Therefore, we have the 0-1 knapsack prob-

lem of selecting and placing items into the knapsack to maximize

the total value while respecting the knapsack’s capacity, after we

ignore all other terms and constraints. □

4.2 Time Complexity
Theorem 2. Our algorithms finish in polynomial time.

Proof. Our approach consists of two algorithms, where Algo-

rithm 1 invokes Algorithm 2. We consider the key steps for each

algorithm. For the “findSchedule” function in Algorithm 2, the “for"

loop in Line 8, Line 9, and Line 10 iterates at most𝑊,𝑇 , and 𝐾

times, respectively. Line 12 runs in 𝑂 (𝐾). Then, the “findSched-

ule” function runs in 𝑂 (𝑊𝑇𝐾). Line 3 in Algorithm 2 invokes the

“findSchedule” function for each labor vendor 𝑛. Thus, overall, the

Algorithm 2 runs in 𝑂 (𝑁𝑊𝑇𝐾). Algorithm 1 invokes Algorithm

2 for each task, and thus the time complexity of Algorithm 1 is

𝑂 (𝐼𝑁𝑊𝑇𝐾). □

4.3 Truthfulness and Individual Rationality
We formally define the utility of a bid, based on which we further

formally define and prove the economic properties of truthfulness

and individual rationality achieved by our proposed algorithms.

Definition 1. Utility: The utility of a bid 𝑖 is

𝑈𝑖 (𝑏𝑖 ) =
{
𝑣𝑖 − 𝑝𝑖 , if 𝑢𝑖 = 1

0, if 𝑢𝑖 = 0

(15)

where 𝑏𝑖 is the bidding price; 𝑣𝑖 is the true valuation of the bid 𝑖 ;
𝑝𝑖 is the payment made to the auctioneer if the bid 𝑖 is a winning
bid; 𝑢𝑖 represents whether the bid 𝑖 is chosen as a winning bid by the
auctioneer. Note that 𝑢𝑖 is ultimately a function of 𝑏𝑖 .

Definition 2. Truthfulness: An auction is truthful if every bid
maximizes its utility by bidding the true valuation, i.e., for all 𝑏𝑖 ≠ 𝑣𝑖 ,
𝑈𝑖 (𝑣𝑖 ) ≥ 𝑈𝑖 (𝑏𝑖 ), ∀𝑖 .

Theorem 3. Our online auction is truthful.
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Proof. Each task (or bid) 𝑖 can be either admitted (i.e., chosen

as a winning bid) or rejected (i.e., not chosen as a winning bid). We

analyze these two cases respectively as follows.

When the task 𝑖 is rejected with a bidding price 𝑣𝑖 , i.e., all sched-

ules make 𝐹 (𝑖𝑙) as in (10) less than 0, we have 𝑢𝑖 = 0 and𝑈𝑖 (𝑣𝑖 ) = 0.

Recall that 𝐹 (𝑖𝑙) is essentially 𝑏𝑖 −𝑝𝑖 , thus this rejected task 𝑖 makes

𝑣𝑖 − 𝑝𝑖 < 0. Now, if the task 𝑖 bids 𝑏𝑖 < 𝑣𝑖 , it is obvious that 𝐹 (𝑖𝑙)
remains less than 0 and we have 𝑢𝑖 = 0 and 𝑈𝑖 (𝑏𝑖 ) = 0. If the

task 𝑖 bids 𝑏𝑖 > 𝑣𝑖 , then there could be a chance for this task to be

admitted; yet,𝑈𝑖 (𝑏𝑖 ) decreases due to 𝑣𝑖 − 𝑝𝑖 < 0.

When the task 𝑖 is admitted with a bidding price of 𝑣𝑖 , i.e., the

optimal schedule generated by our algorithms makes 𝐹 (𝑖𝑙) greater
than 0, then we have 𝑣𝑖 − 𝑝𝑖 > 0, 𝑢𝑖 = 1, and𝑈𝑖 (𝑣𝑖 ) = 𝑣𝑖 − 𝑝𝑖 . Now,
if the task 𝑖 bids 𝑏𝑖 < 𝑣𝑖 ,𝑈𝑖 (𝑏𝑖 ) would not increase. Even worse, it

may lead to the task 𝑖 being rejected and reducing𝑈𝑖 (𝑏𝑖 ) to zero. If

the task 𝑖 bids 𝑏𝑖 > 𝑣𝑖 , 𝐹 (𝑖𝑙) would still be greater than 0 and thus

we continue to have 𝑢𝑖 = 1, and𝑈𝑖 (𝑏𝑖 ) = 𝑣𝑖 − 𝑝𝑖 .
In both cases as analyzed above, we have𝑈𝑖 (𝑣𝑖 ) ≥ 𝑈𝑖 (𝑏𝑖 ), ∀𝑖 . □

Definition 3. Individual Rationality: An auction is individu-
ally rational if every bid always has non-negative utility regardless of
the auction outcome, i.e., for any 𝑏𝑖 , we always have𝑈𝑖 (𝑏𝑖 ) ≥ 0, ∀𝑖 .

Theorem 4. Our online auction is individually rational.

Proof. Recall that 𝐹 (𝑖𝑙) is essentially𝑏𝑖−𝑝𝑖 . From Theorem 3we

know that all bids bid truthfully, and thus 𝐹 (𝑖𝑙) = 𝑣𝑖 −𝑝𝑖 . Algorithm
1 ensures that for each admitted task 𝑖 , 𝐹 (𝑖𝑙) > 0. Therefore, we

have the bid 𝑖’s utility as𝑈𝑖 (𝑣𝑖 ) = 𝑣𝑖 −𝑝𝑖 > 0. If the task 𝑖 is rejected,

then the utility is always set to zero. Therefore, a bid always has

non-negative utility regardless of the auction outcome. □

4.4 Competitive Ratio
The competitive ratio characterizes the multiplicative gap between

the objective function value evaluated with the online solutions and

that evaluated with the offline optimal solutions. Online solutions

are produced by online algorithms on the fly as time goes as the

inputs are gradually observed, and the offline optimal solutions are

computed by solving the problem optimally at hindsight assuming

all the inputs over the entire time horizon are observed all at once.

Definition 4. Competitive Ratio: Let𝑂𝑃𝑇 be the offline optimal
objective value of the problem 𝑃 . Let 𝑃 𝐼 be the objective value of 𝑃
from our online approach after it handles all the 𝐼 tasks. Our online
approach has the competitive ratio 𝛾 if there exits a constant 𝛾 ≥ 1 so
that 𝑃 𝐼 ≥ 1

𝛾𝑂𝑃𝑇 always holds regardless of the inputs to 𝑃 .

Theorem 5. Our proposed online approach has the competitive
ratio 𝛾 = 𝜌 (1 + max{𝛼, 𝛽}) for the problem 𝑃 , i.e., the problem (4).

Proof. We place all the related lemmas and the details of this

proof in the Appendix. We actually follow the roadmap below:

𝑃 𝐼 = 𝑃 𝐼
1
≥ 1

𝜌
𝑃 𝐼

1
≥ 1

𝜌

1

1 + max{𝛼, 𝛽}𝐷
𝐼
1
≥ 1

𝜌 (1 + max{𝛼, 𝛽})𝑂𝑃𝑇 .
(16)

𝑃 𝐼 , 𝑃 𝐼
1
, and 𝐷𝐼

1
are the objective values of the problems 𝑃 , 𝑃1 and

𝐷1, respectively, after handling all 𝐼 tasks. We use 𝑃 𝐼
1
to represent

the objective value of a virtual almost-feasible problem, which

assists this proof. The equality in (16) holds since the problem 𝑃 is

equivalent to the problem 𝑃1. The first inequality in (16) is due to

Lemma 3. The second inequality in (16) is due to Lemma 1. Lemma 4

indicates that the value of 𝐷𝐼 is attained by a dual feasible solution.

The last inequality in (16) holds due to weak duality. □

5 EXPERIMENTAL EVALUATIONS
5.1 Evaluation Settings
Cloud Service Settings: We consider the entire system operating

in one day, which is 144 time slots with each time slot lasting

for 10 minutes. We investigate a cloud data center of different

scales from 50 to 200 compute nodes. Regarding the compute node

capacity of nodes, we use two types of compute nodes, including

the A100(80GB) and A40(48GB). In addition, we also considered

the scenario where a mix of these two types of GPUs forms a

heterogeneous computing environment. We implement the trace-

driven fine-tuning task scheduling simulation system using Python

on a server with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz

running Ubuntu 20.04.6 LTS.

Fine-Tuning Tasks: To obtain the values of experimental pa-

rameters, including 𝑟𝑖 , 𝑟𝑏 , 𝑠𝑖𝑘 , 𝐶𝑘𝑝 and 𝐶𝑘𝑚 , we finetune GPT-2

model using LoRA on the NVIDIA A100(80GB) GPU and A40(48GB)

GPU, respectively. We record the amount of computation (num-

ber of data samples) within a time slot that the GPU can process

under different batch size values. For each time slot, the number

of fine-tuning tasks arrived online is based on three public real-

world traces, including MLaaS[26], Philly[12], and Helios[7], and

our synthetic traces. The number of epochs of each task is gener-

ated randomly between 1 and 5. Note that in fine-tuning tasks, we

usually only need a few epochs to obtain a satisfactory downstream

model. Referring to publicly available datasets such as Samsum, we

randomly generate the number of training data for each user based

on a uniform distribution between [5,20]k.

Algorithms for Comparison: We implement and compare

our approach, pdFTSP (Online primal-dual based Fine-Tuning
Task Scheduling and Pricing), against the following alternatives:
(i) Titan[4]: Titan schedules fine-tuning tasks based on solving an

offline MILP problem, and thus only works in offline scenarios. To

adapt it to our online scenario, we solve the MILP via Gurobi at the

beginning of each time slot for the tasks arrived at the beginning

of the time slot. Additionally, we allow Titan to select the labor

vendor in the marketplace randomly; (ii) EFT (Earliest Finish
Time): For each task, EFT chooses the labor vendor with the lowest

delay for data pre-processing in the marketplace. EFT allocates

the computation of the incoming task to the compute nodes at the

time slots where the task can be finished as soon as possible; (iii)
NTM (No Task Merging): For each task, NTM chooses the labor

vendor in the marketplace randomly. In NTM, there is only one

task can be executed on each compute node at each time. NTM also

allocates the computation to the compute nodes so that the task

can be finished as soon as possible.

5.2 Evaluation Results
Impact of System Scale: Figure 4 illustrates the impact of the

number of compute nodes on normalized social welfare. As the

number of computing nodes increases, more tasks can be processed,
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and thus social welfare grows accordingly. When the tested num-

ber of compute nodes is 50, the performance improvements over

Titan, EFT, and NTM are 30.78%, 137.35%, and 155.84%, respectively.

Additionally, in Figure 5, we vary the number of labor vendors in

the marketplace. The social welfare value increases slightly as the

number of labor vendors increases, since we have more choices for

data pre-processing for the fine-tuning tasks. Figure 6 describes

the social welfare values of four algorithms when we change the

resource capacity of compute nodes. The resource capacities for

these compute nodes in the first two sets of experiments are based

on the NVIDIA A100(80GB)GPU and A40(48GB) GPU, respectively.

Due to the stronger computation capacity of the A100, the first

set of experiments achieve higher social welfare values than the

second. In the third set of experiments of mixed GPUs, pdFTSP

consistently achieves the best social welfare.

Impact of Task Dynamics and Deadlines:We simulate the

task dynamics by using both real-world and synthetic traces, and

the results are shown in Figures 7 and 8, respectively. We can

observe that our proposed pdFTSP consistently outperforms three

baseline algorithms when tested with three real-world traces. For

the synthetic traces, we generate the number of arrived tasks at the

beginning of each time slot following the Poisson process. The light,

medium, and high workload correspond to the Poisson process with

average value 30, 50 and 80, respectively. The proposed pdFTSP

achieves more performance improvement as workload increases.

Specifically, in high workload scenario, the improvement is 48.99%,

151.57%, and 184.94% when compared to Titan, EFT, and NTM,

respectively. Figure 9 depicts the algorithms’ performance with

different methods for generating deadlines, and the pdFTSP still

achieves the best performance.

Truthfulness and Individual Rationality: Figure 10 confirms

the truthfulness of the proposed approach, where we consider a

bid randomly drawn from our experiments. The true valuation is

15, and the optimal schedule returned by Algorithm 2 incurs a total

expanse of 10. As shown, the bidding price only affects the auction

outcome of whether a bid wins, while bidding the true valuation

always yields the maximum utility. In Figure 11, we randomly

sample 10 tasks, and illustrate the users’ bids and their payments.

We see that the bid is always higher than its payment, indicating

the non-negative utility and thus the individual rationality.

Competitive Ratio: Figure 12 evaluates the empirical competi-

tive ratio, which is the ratio of the social welfare achieved by offline

optimum to that achieved by our online solution. We obtain the

offline optimum via Gurobi solver. Results demonstrate that the

proposed algorithm pdFTSP achieves empirical competitive ratios

of no more than 3 in the various settings.

Algorithm Runtime: Figure 13 demonstrates the runtime of

pdFTSP and Titan when scheduling a single fine-tuning task in the

scenario of 100 compute nodes. Since Titan solves a MILP that in-

cludes multiple tasks at the beginning of each time slot, we average

the Gurobi solver’s runtime over the number of tasks. This figure

shows that pdFTSP has a shorter algorithm runtime, and Titan’s

runtime becomes worse as the problem size grows.

6 RELATEDWORK
To the best of our knowledge, Titan [4] is currently the only sched-

uler tailored for fine-tuning tasks in the GPU clusters. Titan formu-

lates the fine-tuning task scheduling problem as a Mixed Integer

Linear Program (MILP), and uses an MILP solver. However, it takes
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relatively long time to find the solution as the problem scales up.

Titan assumes the jobs’ arrival information is known in prior, and

thus cannot perform well in the online scenario. It also ignores the

pricing issue and cannot achieve joint pricing and scheduling.

As for existing conventional deep learning job schedulers in data

centers, AFS [11] leverages elastic resource sharing to reduce the

average job completion time. However, the gain comes from the

long processing time (e.g., up to 2.8 days), which is not suitable for

our LoRA-based fine-tuning tasks that can be completed within

hours. Optimus [19] uses online fitting to estimate training speed,

minimizing the job completion time by joint resource allocation

and task placement. Themis [16] targets fairness scheduling based

on the sharing incentive metric and uses an auction to allocate

resources. These works, as well as other existing schedulers [14, 20,

22, 25, 30, 32], focus on traditional metrics such as time efficiency,

training throughput, and fairness, ignoring the important joint

pricing and scheduling problem and the challenges brought by task

deadlines. Eris [18] prices and schedules deep learning tasks in edge

networks based on auctions, which could be the most similar to our

work. But it ignores the multi-LoRA paradigm, the ever-changing

operational cost, and the data pre-processing decisions.

7 CONCLUSION
Scheduling and pricing fine-tuning tasks with large pre-trained

models is an increasingly important issue that needs to be addressed

by cloud services in the AI era. This paper presents our mathemati-

cal study toward this direction. We conduct auction-based social

welfare optimization and propose online algorithms from the cloud

service’s perspective to schedule and price each fine-tuning task as

it arrives. Our work features the provable optimization guarantees

and economic properties, and the thorough numerical evaluations

that validate our design. For future work, we intend to extend our

study to serving fine-tuning tasks with paradigms beyond LoRA.
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A APPENDIX
Lemma 1. (Relationship between Almost-Feasible problem and

dual problem.) 𝑃 𝐼
1
≥ 1

1+max{𝛼,𝛽 }𝐷
𝐼
1
.

Proof. We first define two types of conditions for each task 𝑖 to

assist in the proof: (i) Almost-Feasible Condition: 𝐹 (𝑖𝑙) > 0;

(ii) Feasible Condition: (𝐹 (𝑖𝑙) > 0) ∧ (∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖′𝑙) ≤

𝐶𝑘𝑝 ,∀𝑘, 𝑡) ∧ (∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖′𝑙) + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡). In Algorithm

1, line 6 checks Almost-Feasible Condition , while line 6 and line

8 together check Feasible Condition. We refer to the solution gen-

erated by the Almost-Feasible Condition as the almost-feasible

primal solution. Likewise, the solution generated by the Feasi-

ble Condition is called the feasible primal solution. An almost-

feasible primal solution can be easily transformed into a feasible

https://huggingface.co/docs/autotrain/llm_finetuning
https://huggingface.co/docs/autotrain/llm_finetuning
https://huggingface.co/models
https://huggingface.co/pricing#spaces
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-outsource-data-labeling?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-outsource-data-labeling?view=azureml-api-2
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primal solution by simply not executing tasks that satisfy line 6

but not line 8 in Algorithm 1. Let 𝑃𝑖
1
denote the objective func-

tion value of problem 𝑃1 after processing task 𝑖 achieved by the

almost-feasible primal solution. Denote𝐷𝑖
1
as the objective function

value of dual problem 𝐷1 after processing task 𝑖 . In this lemma,

we will specify the relationship between 𝑃 𝐼
1
and 𝐷𝐼

1
. Let 𝑆𝑎 ⊂

[𝐼 ] be the set of tasks that satisfy the Almost-Feasible Condition,

i.e., 𝐹 (𝑖𝑙) > 0,∀𝑖 ∈ 𝑆𝑎 . Let 𝑆𝑟 = [𝐼 ]\𝑆𝑎 be the set of tasks that

the Almost-Feasible Condition directly rejects. For task 𝑖 ∈ 𝑆𝑟 ,

𝑃𝑖
1
− 𝑃𝑖−1

1
= 0, 𝐷𝑖

1
− 𝐷𝑖−1

1
= 0. For task 𝑖 ∈ 𝑆𝑎 , suppose that the op-

timal schedule generated by the online approach (Algorithm 2) is 𝑙 ,

then 𝑃𝑖
1
−𝑃𝑖−1

1
= 𝑏𝑖𝑙 . We also have𝐷𝑖

1
−𝐷𝑖−1

1
= 𝜇𝑖 +

∑
𝑘
∑
𝑡𝐶𝑘𝑝 (𝜆

(𝑖 )
𝑘𝑡

−
𝜆
(𝑖−1)
𝑘𝑡

)+∑𝑘∑𝑡 (𝐶𝑘𝑚−𝑟𝑏 ) (𝜑
(𝑖 )
𝑘𝑡

−𝜑 (𝑖−1)
𝑘𝑡

). Equation (11) indicates that
for the selected optimal schedule 𝑙 and 𝐹 (𝑖𝑙) > 0, 𝜇𝑖 = 𝐹 (𝑖𝑙) ≤ 𝑏𝑖𝑙 −∑
𝑘
∑
𝑡 :𝑡 ∈𝑙 (𝑠𝑘𝑡 (𝑖𝑙)𝜆

(𝑖−1)
𝑘𝑡

+ 𝑟𝑘𝑡 (𝑖𝑙)𝜑
(𝑖−1)
𝑘𝑡

) . Additionally, from equa-

tion (7) and (8) we have 𝜆
(𝑖 )
𝑘𝑡

−𝜆 (𝑖−1)
𝑘𝑡

= 𝜆
(𝑖−1)
𝑘𝑡

𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

+𝛼 (
¯𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

),

𝜑
(𝑖 )
𝑘𝑡

− 𝜑 (𝑖−1)
𝑘𝑡

= 𝜑
(𝑖−1)
𝑘𝑡

𝑟𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑚−𝑟𝑏 + 𝛽 (

¯𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑚−𝑟𝑏 ). Next, we substitute

𝜇𝑖 , 𝜆
(𝑖 )
𝑘𝑡

− 𝜆 (𝑖−1)
𝑘𝑡

and 𝜑
(𝑖 )
𝑘𝑡

− 𝜑 (𝑖−1)
𝑘𝑡

in 𝐷𝑖
1
− 𝐷𝑖−1

1
with the above

results. Then we get 𝐷𝑖
1
−𝐷𝑖−1

1
≤ 𝑏𝑖𝑙 +

∑
𝑘
∑
𝑡𝛼 · ¯𝑏𝑖𝑙 ·𝑠𝑘𝑡 (𝑖𝑙) +

∑
𝑘
∑
𝑡 𝛽 ·

¯𝑏𝑖𝑙 · 𝑟𝑘𝑡 (𝑖𝑙). Recall that ¯𝑏𝑖𝑙 =
𝑏𝑖𝑙∑

𝑘
∑
𝑡𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) . Thus 𝐷

𝑖
1
− 𝐷𝑖−1

1
≤

𝑏𝑖𝑙+max{𝛼, 𝛽}𝑏𝑖𝑙 = (1+max{𝛼, 𝛽})𝑏𝑖𝑙 = (1+max{𝛼, 𝛽})(𝑃𝑖
1
−𝑃𝑖−1

1
).

The initial values 𝑃0

1
= 𝐷0

1
= 0. Therefore, 𝑃 𝐼

1
= 𝑃0

1
+ ∑

𝑖∈𝑆𝑎 (𝑃
𝑖
1
−

𝑃𝑖−1

1
) =

∑
𝑖∈𝑆𝑎 (𝑃

𝑖
1
− 𝑃𝑖−1

1
) ≥ ∑

𝑖∈𝑆𝑎
1

(1+max{𝛼,𝛽 }) (𝐷
𝑖
1
− 𝐷𝑖−1

1
) =

1

(1+max{𝛼,𝛽 }) (𝐷
𝐼
1
− 𝐷0

1
) = 1

(1+max{𝛼,𝛽 })𝐷
𝐼
1
.

□

Lemma 2. (Capacity control.) Assume ¯𝑏𝑖𝑙 ≥ 1,∀𝑖, 𝑙 , let𝛼 = max𝑖 { 𝑏𝑖𝑀𝑖 }
and 𝛽 = max𝑖 {𝑏𝑖𝑟𝑖 }, then for any task 𝑖 and its corresponding optimal
schedule 𝑙 generated by Algorithm 2, if there exists a pair of (𝑘, 𝑡)
resulting in ∑𝑖

𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖′𝑙) ≥ 𝐶𝑘𝑝 or ∑𝑖

𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖′𝑙) + 𝑟𝑏 ≥

𝐶𝑘𝑚 , then no future task would be scheduled to execute on compute
node 𝑘 at time 𝑡 .

Proof. Since
¯𝑏𝑖𝑙 =

𝑏𝑖𝑙∑
𝑘
∑
𝑡𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) , then the assumption

¯𝑏𝑖𝑙 ≥
1 is equivalent to say that there is a lower bound on the min-

imum wage, which is commonly used as in [13], since we can

scale the units of 𝑏𝑖𝑙 , 𝑠𝑘𝑡 (𝑖𝑙) and 𝑟𝑘𝑡 (𝑖𝑙). According to (7), we have

𝜆
(𝑖 )
𝑘𝑡

+ 𝛼 = 𝜆
(𝑖−1)
𝑘𝑡

(1 + 𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) + 𝛼 (
¯𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) + 𝛼 = 𝜆
(𝑖−1)
𝑘𝑡

(1 +
𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) + 𝛼 (1 +
¯𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

). Since ¯𝑏𝑖𝑙 ≥ 1, we can obtain 𝜆
(𝑖 )
𝑘𝑡

+ 𝛼 ≥

(𝜆 (𝑖−1)
𝑘𝑡

+ 𝛼) (1 + 𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) ≥ (𝜆 (𝑖−1)
𝑘𝑡

+ 𝛼)2
𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

, where the last

inequality is due to 1 + 𝑥 ≥ 2
𝑥
for 𝑥 ∈ [0, 1]. Using the above

formula recursively until we reach the initial status, then we get

𝜆
(𝑖 )
𝑘𝑡

+𝛼 ≥ (𝜆 (0)
𝑘𝑡

+𝛼)2

∑𝑖
𝑖′=1

∑
𝑙 𝑥𝑖′𝑙 𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

. Likewise, according to (8), we

have 𝜑
(𝑖 )
𝑘𝑡

+ 𝛽 ≥ (𝜑 (0)
𝑘𝑡

+ 𝛽)2
∑𝑖
𝑖′=1

∑
𝑙 𝑥𝑖′𝑙 𝑟𝑘𝑡 (𝑖𝑙 )

𝐶𝑘𝑚−𝑟𝑏 . If a task 𝑖 with sched-

ule 𝑙 makes the allocation results exceed the resource capacity, i.e.,∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖′𝑙) ≥ 𝐶𝑘𝑝 or

∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖′𝑙) + 𝑟𝑏 ≥ 𝐶𝑘𝑚 , then

we have either

∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖′𝑙 ′ )
𝐶𝑘𝑝

≥ 1 or

∑𝑖
𝑖′=1

∑
𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖′𝑙 ′ )
𝐶𝑘𝑚−𝑟𝑏 ≥ 1. Thus

we have either 𝜆
(𝑖 )
𝑘𝑡

+ 𝛼 ≥ (𝜆 (0)
𝑘𝑡

+ 𝛼) · 2 or 𝜑
(𝑖 )
𝑘𝑡

+ 𝛽 ≥ (𝜑 (0)
𝑘𝑡

+ 𝛽) · 2.

Recall that the initial values 𝜆
(0)
𝑘𝑡

= 𝜑
(0)
𝑘𝑡

= 0. Then we have

either 𝜆
(𝑖 )
𝑘𝑡

≥ 𝛼 or 𝜑
(𝑖 )
𝑘𝑡

≥ 𝛽 . Recall that 𝛼 = max𝑖 { 𝑏𝑖𝑀𝑖 } and

𝛽 = max𝑖 {𝑏𝑖𝑟𝑖 }. When 𝜆
(𝑖 )
𝑘𝑡

≥ 𝛼 , for any future task 𝑖 , if a schedule

ˆ𝑙 contains executing the task 𝑖 on compute node 𝑘 at time slot 𝑡 ,

then the resource price max(𝑘,𝑡 ) ∈𝑙 {𝜆
(𝑖 )
𝑘𝑡

} ≥ 𝜆
(𝑖 )
𝑘𝑡

= 𝛼 . Thus we have

𝐹 (𝑖 ˆ𝑙) = 𝑏
𝑖 ˆ𝑙
− 𝑀𝑖 max(𝑘,𝑡 ) ∈𝑙 {𝜆

(𝑖 )
𝑘𝑡

} ≤ 𝑏𝑖 − 𝑀𝑖𝜆
(𝑖 )
𝑘𝑡

= 𝑏𝑖 − 𝑀𝑖𝛼 < 0.

Therefore, we have 𝐹 (𝑖 ˆ𝑙) < 0, and hence, the future task 𝑖 would not

be allocated to compute node 𝑘 at time slot 𝑡 . Likewise,𝜑
(𝑖 )
𝑘𝑡

≥ 𝛽 and

𝛽 = max𝑖 {𝑏𝑖𝑟𝑖 } also incurs the future task 𝑖 would not be allocated

to compute node 𝑘 at time slot 𝑡 . □

Lemma 3. (Relationship between primal problem and Almost-Feasible

problem.) 𝑃 𝐼
1
≥ 1

𝜌 𝑃
𝐼
1
, where 𝜌 = 1+max{

¯𝑏𝑖𝑙,𝑚𝑎𝑥
¯𝑏𝑖𝑙,𝑚𝑖𝑛

𝑠𝑖𝑘,𝑚𝑎𝑥
𝑠𝑖𝑘,𝑚𝑖𝑛

,
¯𝑏𝑖𝑙,𝑚𝑎𝑥
¯𝑏𝑖𝑙,𝑚𝑖𝑛

𝑟𝑖,𝑚𝑎𝑥
𝑟𝑖,𝑚𝑖𝑛

}.

Proof. Let 𝑆𝑎 and 𝑆𝑐 be the set of accepted tasks filtered by

Almost-Feasible Condition and Feasible Condition, respectively.

Then we have 𝑆𝑐 ⊂ 𝑆𝑎 . Note that we can convert the almost-feasible

solution to the feasible solution by simply not executing the tasks in

𝑆𝑎 \𝑆𝑐 . We use 𝑃 𝐼
1
and 𝑃 𝐼

1
to represent the objective value of problem

𝑃1 after processing all 𝐼 incurred by almost-feasible solution and

feasible solution, respectively. Then

𝑃 𝐼
1

𝑃 𝐼
1

=
∑
𝑖∈𝑆𝑎

∑
𝑙𝑥𝑖𝑙𝑏𝑖𝑙∑

𝑖∈𝑆𝑐
∑
𝑙𝑥𝑖𝑙𝑏𝑖𝑙

=

∑
𝑖∈𝑆𝑐

∑
𝑙𝑥𝑖𝑙𝑏𝑖𝑙+

∑
𝑖∈𝑆𝑎\𝑆𝑐

∑
𝑙𝑥𝑖𝑙𝑏𝑖𝑙∑

𝑖∈𝑆𝑐
∑
𝑙𝑥𝑖𝑙𝑏𝑖𝑙

= 1+
∑
𝑖∈𝑆𝑎\𝑆𝑐

∑
𝑙𝑥𝑖𝑙𝑏𝑖𝑙∑

𝑖∈𝑆𝑐
∑
𝑙𝑥𝑖𝑙𝑏𝑖𝑙

= 1 +
∑
𝑖∈𝑆𝑎\𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙
∑
𝑘
∑
𝑡 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )∑

𝑖∈𝑆𝑐
∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙
∑
𝑘
∑
𝑡 :𝑡 ∈𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )

= 1 +
∑
𝑘
∑
𝑡
∑
𝑖∈𝑆𝑎\𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )∑
𝑘
∑
𝑡
∑
𝑖∈𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )
. From Lemma 2 we know

that for any given 𝑘 and 𝑡 , the online algorithm ensures there is

at most only one task that would exceed the resource capacity.

Let 𝐻 (𝑘, 𝑡) represent the last task executed on compute node 𝑘

at time 𝑡 . Then,
𝑃 𝐼

1

𝑃 𝐼
1

≤ 1 +
∑
𝑘
∑
𝑡

∑
𝑙𝑥𝑖𝑙

¯𝑏𝐻 (𝑘,𝑡 )𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )∑
𝑘
∑
𝑡
∑
𝑖∈𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )
≤ 1 +

max(𝑘,𝑡 ) {max{
∑
𝑙𝑥𝑖𝑙

¯𝑏𝐻 (𝑘,𝑡 )𝑙𝑠𝑘𝑡 (𝑖𝑙 )∑
𝑖∈𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
,

∑
𝑙𝑥𝑖𝑙

¯𝑏𝐻 (𝑘,𝑡 )𝑙𝑟𝑘𝑡 (𝑖𝑙 )∑
𝑖∈𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙 )
}} ≤

1+max{
¯𝑏𝑖𝑙,𝑚𝑎𝑥
¯𝑏𝑖𝑙,𝑚𝑖𝑛

𝑠𝑖𝑘,𝑚𝑎𝑥
𝑠𝑖𝑘,𝑚𝑖𝑛

,
¯𝑏𝑖𝑙,𝑚𝑎𝑥
¯𝑏𝑖𝑙,𝑚𝑖𝑛

𝑟𝑖,𝑚𝑎𝑥
𝑟𝑖,𝑚𝑖𝑛

}, where ¯𝑏𝑖𝑙,𝑚𝑎𝑥 = max(𝑖,𝑙 ) { ¯𝑏𝑖𝑙 }
and

¯𝑏𝑖𝑙,𝑚𝑖𝑛 = min(𝑖,𝑙 ) { ¯𝑏𝑖𝑙 } are the maximum and minimum so-

cial welfare increment incurred by utilizing per unit of resource

per time slot; 𝑠𝑖𝑘,𝑚𝑎𝑥 = max(𝑖,𝑘 ) {𝑠𝑖𝑘 } and 𝑠𝑖𝑘,𝑚𝑖𝑛 = min(𝑖,𝑘 ) {𝑠𝑖𝑘 };
𝑟𝑖,𝑚𝑎𝑥 = max𝑖 {𝑟𝑖 } and 𝑟𝑖,𝑚𝑖𝑛 = min𝑖 {𝑟𝑖 }. Note that when the re-

source requirement of a task is far less than capacity, we have

𝑠𝑘𝑡 (𝑖𝑙 )∑
𝑖∈𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
→ 0, and

𝑟𝑘𝑡 (𝑖𝑙 )∑
𝑖∈𝑆𝑐

∑
𝑙𝑥𝑖𝑙

¯𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙 )
→ 0, then 𝜌 →

1. □

Lemma 4. (Dual Feasibility Guarantee.) 𝐷𝐼
1
is the objective value

achieved by a dual feasible solution.

Proof. Suppose that ({𝜇𝑖 }𝑖 , { ˆ𝜆𝑘𝑡 }𝑘,𝑡 , {𝜑𝑘𝑡 }𝑘,𝑡 ) is a solution to

problem 𝐷1. We next determine the specific values of the above

variables while satisfying all the constraints of problem 𝐷1. Let

ˆ𝜆𝑘𝑡 = 𝜆
(𝐼 )
𝑘𝑡
, 𝜑𝑘𝑡 = 𝜑

(𝐼 )
𝑘𝑡
,∀𝑘, 𝑡 . For each job 𝑖 , since we select the

schedule that achieves the maximum 𝐹 (𝑖𝑙), combining with 𝜆𝑘𝑡 and

𝜑𝑘𝑡 are monotonically increasing functions, i.e., 𝜆𝑖
𝑘𝑡

≤ 𝜆𝐼
𝑘𝑡
, 𝜑𝑖
𝑘𝑡

≤
𝜑𝐼
𝑘𝑡
,∀𝑖, 𝑘, 𝑡 , then the constraint (6a) is satisfied. Therefore, 𝐷𝐼

1
is

the objective value achieved by the designed dual feasible solution

�̃�𝑖 = 𝜇𝑖 , ˆ𝜆𝑘𝑡 = 𝜆
(𝐼 )
𝑘𝑡

, 𝜑𝑘𝑡 = 𝜑
(𝐼 )
𝑘𝑡
,∀𝑖, 𝑘, 𝑡 . □
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