
Demystifying Deep Learning in Networking∗

Ying Zheng, Ziyu Liu, Xinyu You,
Yuedong Xu

School of Information Science and Technology
Fudan University, Shanghai, China

ydxu@fudan.edu.cn

Junchen Jiang
Department of Computer Science

University of Chicago
Chicago, Illinois

junchenj@uchicago.edu

ABSTRACT
We are witnessing a surge of efforts in networking com-
munity to develop deep neural networks (DNNs) based ap-
proaches to networking problems. Most results so far have
been remarkably promising, which is arguably surprising
given how intensively these problems have been studied
before. Despite these promises, there has not been much
systematic work to understand the inner workings of these
DNNs trained in networking settings, their generalizabil-
ity in different workloads, and their potential synergy with
domain-specific knowledge. The problem of model opacity
would eventually impede the adoption of DNN-based solu-
tions in practice. This position paper marks the first attempt
to shed light on the interpretability of DNNs used in network-
ing problems. Inspired by recent research in ML towards
interpretable ML models, we call upon this community to
similarly develop techniques and leverage domain-specific
insights to demystify the DNNs trained in networking set-
tings, and ultimately unleash the potential of DNNs in an
explainable and reliable way.

CCS CONCEPTS
•Networks→Cloud computing;Networkmanagement;

KEYWORDS
Neural networks, Resource allocation, Interpretability

ACM Reference Format:
Ying Zheng, Ziyu Liu, Xinyu You, Yuedong Xu and Junchen Jiang.
2018. Demystifying Deep Learning in Networking. In APNet ’18:
2nd Asia-Pacific Workshop on Networking, August 2–3, 2018, Beijing,

∗This work is supported by Natural Science Foundation of China (No.
61772139) and CERNET Innovation Project (No. NGII20170209).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’18, August 2–3, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6395-2/18/08. . . $15.00
https://doi.org/10.1145/3232565.3232569

China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3232565.3232569

1 INTRODUCTION
Deep neural network (DNN) based approaches are gather-
ing momentum in the networking community. Studies from
academia and industry have shown remarkably promising
improvements by DNN-based solutions (e.g., deep reinforce-
ment learning) in a variety of classic problems, such as cloud
resource allocation [10], end-to-end video adaptation [11],
routing [17], wireless bandwidth allocation [18], and so forth.
It will be no surprise to see DNNs similarly applied to other
networking problems.
By building solutions around DNNs, this recent line of

research signifies a potential paradigm shift, from the tra-
ditional “white-box” approach (which is driven by domain-
specific knowledge) to a “black-box” one (which relies on
opaque data-driven models).1 On one hand, not only have
these DNN-based solutions substantially improved perfor-
mance along important metrics, but they suggest a general
approach to a wide range of systems problems that have
traditionally been tackled in isolation using hand-crafted so-
lutions. On the other hand, however, DNN-based approaches
can backfire for its lack of interpretability. The inability to
understand these deep models lies at the root of a multi-
tude of concerns; e.g., it is difficult to completely trust the
model will perform well in new environments, to debug
why a wrong decision was made, and to defend it against
adversarial manipulation.

Moreover, unlike othermachine-learning problem domains,
networking/systems problems (e.g., routing, scheduling) have
explicit structures and constraints that have traditionally
inspired interpretable domain-specific, albeit suboptimal,
solutions. Unfortunately, this first-principles approach is in-
compatible with opaque models like DNNs. This prevents
any synergy between DNNs and domain-specific knowledge,
which could otherwise achieve the best of both worlds.

Inspired by recent efforts in ML community towards inter
-pretable ML [1, 8], this paper calls upon the networking com-
munity to similarly enable interpretation of DNNs trained
1The increased interests in complex black-box solutions coincide with the
trend of harnessing the power of massive measurement data and building
models in a “big data” fashion. While both are under the aegis of data-driven
approaches, we focus more on issues of black-box solutions, rather than
data-driven modeling, which merits a separate discussion on its own.

1

https://doi.org/10.1145/3232565.3232569
https://doi.org/10.1145/3232565.3232569
https://doi.org/10.1145/3232565.3232569
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3232565.3232569&domain=pdf&date_stamp=2018-08-01

APNet ’18, August 2–3, 2018, Beijing, China Y. Zheng et al.

In
pu

t	s
ta
te

Ac
tio

n	s
pa
ce

Deep	Neural	Network	(DNN)

Figure 1: Use of DNN in decision making.

in networking/systems settings. We review the recent pro-
gresses and sketch a research roadmap driven by three ques-
tions, each elucidating a key aspect of DNNs for networking.
• How is a decision made? (§3) The ability to explain the
decision-making process sheds light on the inner work-
ings of an ML model and the implicit hypothesis behinds
it, and is a crucial step towards model interpretability.

• When will it fail? (§4) For a DNN to be deployed in real
world, one must understand its worst cases, whether it
will performwell in different environments, and whether
it is vulnerable to adversarial inputs.

• Can domain-specific insight be integrated? (§5) Many net-
working problems have expert-crafted solutions, so we
naturally want to see if they can improve DNNs or if
new insights can be learned from DNNs.

2 WHY IS INTERPRETABILITY CRUCIAL?
We start with some background on DNNs used in networking
settings and then motivate why interpretability is a crucial
yet missing pieces these DNNs.

2.1 Early promises of DNNs
Many DNN-based solutions are introduced on the premise
that performance optimization in networked systems faces
enormous complexities: multiple networked subsystems op-
erating independently but heavily influencing each other
(e.g., routing), the need to balance between multiple seem-
ingly conflicting performance metrics (e.g., how to simulta-
neously minimize playback stalls and maximize video reso-
lution), and complex relations between control actions and
their outcomes (e.g., congestion control). Traditional rule-
based approaches are ill-suited to cope with these complex-
ities; instead, DNNs’ high complexities and model expres-
siveness make them a better fit.

Indeed, DNN-based solutions, such as deep reinforcement
learning, have already shown promising improvement across
several networking problems. Table 1 summarizes its uses
in at least four problems. Each problem is formulated as a
reinforcement learning process, in which the key step is to
use a DNN to map an input “state” to a probability distribu-
tion over “actions”. Each action triggers a reward (e.g., job
slowdown), and the DNN updates its parameters to maxi-
mize expected reward until they converge.2 Across all these

2We use input “features” interchangeably with “state”, and output “decision”
interchangeably with “action”.

Problem Input states Output action Example gains
Cloud job

scheduling [10]
Unused resources,
new jobs’ demands

Next job to
schedule

32.4% less job
slowdown

Adaptive-bitrate
streaming [11]

Throughput history,
buffer length,

available bitrates

Bitrate
selection

12-25%
better QoE

Routing [17] Traffic matrix
history Routing plan 23-50%

less congestion

Cellular traffic
scheduling [18]

Traffic demand,
cellular condition,
congestion, etc

Traffic rate
assignment

14.7% higher
utilization

Table 1: Early promises of DNNs in networking.
problems, the DNN-based solutions have seen substantial
improvement over state-of-the-art solutions (Table 1).

2.2 Concerns of treating DNNs as blackboxes
Despite the early promises, these DNN-based solutions are
extremely hard to interpret with intuitive explanations. Com-
prising of tens of thousands (or more) of parameters all affect-
ing output in complex, non-linear ways, the inner workings
of a DNN are hard to explain, even by their developers. Here,
we identify three problems resulting from the absence of
interpretability of these DNNs in networking/systems.3

Hard to confer causality: Some previous work did attempt
to explain how a trained DNN works by hypothesizing intu-
itive explanations and empirically check if they match the
DNN’s behavior on test data. However, this approach merely
suggests statistical association, not causality from an input
to an output. Without a proper understanding of the causal-
ity, we will not be able to trust if DNN works the same way
we believe it does.
Hard to trust:Whenmistakes have high-stake consequences,
people tend to distrust a decision-making process, if they do
not understand its worst-case performance and generaliz-
ability. In this sense, we not only care how often the model is
right, butwhen the model is right. DNNs are known to be vul-
nerable to adversarial inputs. In contrast, more interpretable
models are easier to be trusted, because it allows for post
hoc debugging, which explains why system developers and
administrators often favor white-box models over black-box
ones when they have similar performance [7].
Incompatiblewith domain-specific knowledge: Formany
systems problems, domain-specific knowledge is abundant.
It could help put DNNs and their gains into perspective,
make themmore reliable, and reduce model complexity with-
out sacrificing performance. However, the opacity of DNNs
makes incorporating domain-specific knowledge difficult. In
all DNN-based solutions so far, once the system states and
decisions are encoded as the intput/output, the training of
DNN is completely agnostic to domain-specific knowledge,
making it hard to discern whether the performance gains re-
sult from a new insight or a better way of using some known

3We mainly focus on the intepretability of the DNNs in deep reinforcement
learning, not that of reinforcement learning.

2

Demystifying Deep Learning in Networking APNet ’18, August 2–3, 2018, Beijing, China

insights. Conversely, this prevents any synergies between
DNNs and domain knowledge.
Our roadmap: As DNNs gain momentum in networking
research, the interpretability of DNNs is urgently needed.
Next, we will decompose interpretability into three questions
which constitute the research agenda that we are pursuing.

3 WHY DNN MAKES THE DECISION?
We begin by asking “why does DNN make certain decision?”
The ability to explain a decision is the prerequisite of other
properties of interpretability. As simple as it may sound,
answering it can be tricky but deeply revealing.

3.1 Important features
Before showing how an input is turned into an output, we
first ask what input features are most influential. The input
of a DNN often includes all features that might be useful
in the decision-making. The idea is that irrelevant features
will be automatically “turned off” during training, so using
more features should only improve its expressiveness with-
out hurting the performance (if trained on enough data).
But it complicates the interpretation of DNN, since many
features are not used or have negligible impact on the output.
To reveal what features a DNN depends on, a popular

technique is to use saliency map [15], which is a heatmap
showing how much impact of each input feature on the
output. Here is a simple way of generating such a saliency
map for a given DNN. Let us use x to denote the input feature
vector (state), y the output vector of probability distribution
over possible actions, y = f (x), and yi the probability of
choosing the ith action. We can then compute the gradient
vector wi of yi to a given input vector x = x0 with wi =
∂yi
∂x

���
x=x0

. The jth element of wi shows how much a small

change on the jth feature of xwill change how likely ith action
is picked. These gradients indicate each feature’s influence
on the output4. When a DNN comprises convolutional layers,
the Grad-CAM [14] method can be employed to generate
the saliency map.
We use the DNN-based logic of DeepRM as a case study,

and compute the saliency map to visualize the influence of
different input features on its output. The DNN was trained
on a sequence of jobs to minimize average job slowdown
(job’s duration in the system divided by its actual processing
time) using the open source code [10]. Figure 2 shows the
saliency map of a specific output action (choosing the first
job in the queue) with respect to an example input state. In an
input state. the horizontal and vertical coordinates indicate

4Two caveats need to be noted when interpreting a DNN saliency map. First,
the map only indicates “local” interpretation; that is, the may vary across
different inputs. Second, gradient-based saliency maps of DNNs suffer from
so called “gradient shattering”, that is substantial noise as the gradients
propagate through the layers in a DNN, which could be mitigated with
more refined techniques [2].

Mem	demand	per	time	cycle

Duration

CPU	demand	per	time	cycle

Current	
occupancy Outstanding	jobs

In
pu

t	
St
at
e

Sa
lie
nc
y	

m
ap
s

Sa
lie
nc
y	

m
ap
s

CP
U

M
em

or
y

High	influence

Low	influence

In
pu

t	
St
at
e

#1 #2 #3

Figure 2: An example input state of DeepRM DNN, and
the corresponding saliency map indicating the influ-
ence of each input feature on the probability of choos-
ing one action. (Some states are omitted for simplicity.)
the resource slices and the time units respectively. Each pixel
is a binary value (1 means the resource is needed/occupied,
and 0 otherwise) in the input states. The CPU (or RAM) state
is captured by four maps: the leftmost map shows the CPUs
(or RAM) occupied by the jobs that have been scheduled
and it scrolls up row-by-row after each time slot; the other
three maps illustrate the CPU (or RAM) resource demands
of the jobs awaiting for scheduling. A negative gradient is
visualized in blue and a positive gradient is visualized in red
at the saliency map, and the depth of a color represents the
relative value of this gradient. So if the resource demand
of a job is labeled dark red (or blue) in the saliency map, it
means increasing the resource demand of that job will greatly
increase (or reduce) the chance of making the same decision.
For instance, if the CPU or memory demand per time cycle
increases at job #3, more red pixels are covered, leading to a
higher probability of choosing job #1; if the CPU demand per
time cycle increases at job #2, the chance of scheduling job
#1 decreases. Recall that one saliency map only visualizes the
impact of input states on a specific output action, so even if
the sum of the calculated values on a saliency map increases,
it does not necessarily lead to the job being selected.

From the figure, we can see two observations.
• The current CPU/RAM occupancy has relatively small
impact on the output. Even when their gradients are of
non-zero values, the positive ones and negative ones
cancel out each other’s impact.

• Some of the outstanding jobs always have high impact
on the output. (Some jobs have dark-color regions.)

3.2 From input to high-level features
Knowing which features influence the output is useful, but
it would be more informative if we could explain how they
influence it. This requires “opening up” the DNN to under-
stand what high-level representations are being used. Given

3

APNet ’18, August 2–3, 2018, Beijing, China Y. Zheng et al.

#1 #2 #3

CP
U

M
em

or
y

(a) State maximally activating
a neuron

CPU	demand/time	cycle
Duration

Mem	demand/time	cycle

(b) Impact of job length on
neuron activation

Figure 3: Visualizing what high-level representations
a particular intermediate neuron focuses on. We see (a)
regular patterns (CPU/-intensive, long or short jobs) in
the state that maximally activates a neuron, and (b)
threshold effect of job length on neuron activation.

NN’s inherent multi-layer structure, a natural approach is
to examine the activation of intermediate neurons in hidden
layers [19]. The basic intuition is that the influence of any in-
put feature on the final DNN output must through activating
(or not activating) some intermediate neurons in the hidden
layers. We then visualize this mapping from two aspects.
Maximally activating intermediate neurons: First, we
can look at the input that maximally activates a neuron.
The reasoning behind it is that a pattern of input to which
the neuron is responding maximally could be a good first-
order representation of what a neuron is doing. This is the
basic insight behind much recent work to examine DNN’s
high-level representations [3]. Take DeepRM (three layers
with a fully-connected hidden layer of 20 neurons) as an
example. Figure 3(a) shows the input state that maximizes the
gradient of one of the 20 intermediate neurons. To search the
maximum activation, we enumerate the resource occupancy
of each input map separately.
We can see that the neuron is maximally activated when

one of the 2nd job are long, and 1st and 3rd are short. More-
over, neuron is maximally activated by high CPU and RAM
requirements of a job with a long duration. We observe
similar phenomenons across all intermediate neurons (the
placement of long/short jobs varies), which suggests that
the intermediate neurons probably look at the duration of
the outstanding jobs. To verify this speculation, we use the
second idea.
(In)distinguishable input: The second intuition is that two
inputs are distinguishable, only if they lead to different acti-
vations on a certain neuron. To illustrate it, we run a simple
experiment: Figure 3(b) plots the activation of a neuron (the
same neuron as in Figure 3(a)) as a function of the length of
each job (here, we use the 1st and 2nd job in Figure 3) while
setting other jobs empty. We can see that the 2nd job does
not make any difference on the neuron when it is over 15
cycles, and always deactivates the neuron when less than 5
cycles; and different job lengths matter only between 5 and

15 cycles. In contrast, the 1st job’s impact peaks at a length
of 3 cycles, and effectively deactivates the neuron when the
length is over 6 cycles. In short, the job length does have a
threshold effect on neuron activation. This observation holds
across all intermediate neurons.
These observations suggests that we might be able to

decompose of the decision-making process into high-level
representations that can be studied separately. Instead of
testing the properties of a DNN in a black-box manner, we
could now explainwhy there might be such a correlation. For
instance, it is believed that DeepRM outperforms alternatives
because it can hold a large job even if there is enough avail-
able resources to run it. A black-box approach can establish
a statistical correlation between selecting a job and the job
size. In contrast, by examining the intermediate neurons, we
can actually explain correlation by DNN works internally:
the intermediate neurons are only activated when the job
size is over or below certain thresholds, i.e., the neurons
effectively act as a “filter” of job size. Such interpretation is
more generalizable and reliable.

3.3 Research thrusts
We summarize the section by posing an overarching question,
which can drive future research in this direction:

Canwe explain a DNN’s inner working by domain-
specific knowledge in a white-box manner?

Instead of treating DNNs as black boxes and testing hy-
pothesis statistically, a white-box explanation strives to ex-
plain a DNN’s decision from first principles: ideally, we want
to map DNN’s internal mechanism step-by-step to intuitive
explanation intelligible to domain experts. This vision can
open up many possibilities, including post-hoc debugging,
and transparent logic that imitates DNN’s behavior. An ideal
answer to this question would require to completely reverse-
engineer the DNNs, which unfortunately is believed to be
impossible [16] in a general case. Nonetheless, ML commu-
nities have developed a plethora of techniques that could
decode specific structures in DNNs [9].
Where domain knowledge is needed: Interpretation of
DNNs does require domain knowledge: what domain-specific
pattern is the DNN responding to, what logic is the DNN ap-
proximating, etc. Automatically generating and testing these
domain-specific hypothesis will require close collaboration
between domain experts and ML experts. Fortunately, our
preliminary experiments in this section have suggested that
it is indeed plausible to test domain-specific hypothesis by
visualizing/interpreting features and high-level representa-
tions of DNNs used in networking/systems settings.

4 WILL IT FAIL MISERABLY?
DNNs do improve average performance, but meanwhile they
are more vulnerable to adversarial or unseen input than alter-
native rule-based models. Here, we show that DNNs trained
for networking problems suffer from the same weakness.

4

Demystifying Deep Learning in Networking APNet ’18, August 2–3, 2018, Beijing, China

(a) Original job sequence
in training

(b) Adversarial job sequence:
Shortening Job #1 of (a)

Current	
occupancy

Job	
#1

CP
U

M
em

or
y

Job	
#2

Current	
occupancy

Job	
#1

CP
U

M
em

or
y

Job	
#2

Figure 4: An adversarial example of DeepRM, created
by slightly decreasing the length of job #1. In both
cases, the best scheduling order is first #2 then #1. But
DeepRM will schedule job #1 first, which increases the
average slowdown from 4.3 time unit (#2→#1) to 4.95
(#1→#2). This is because the slightly shorter length of
job #1 “tricks” DeepRM into believing it is a short job
which need be prioritized.
4.1 Adversarial input states
Adversarial examples of a model are those that differ only
slightly to a seen example in the training data but can “trick”
themodel intomaking arbitrarywrong decisions. Generating
adversarial examples for DNNs has been studied as a useful
tool to understand the robustness and corner cases in many
DNN applications, e.g., image classification [12].

DNNs in systems is of no difference. We create a simple ad-
versarial example of the resource allocation DNN in DeepRM
by randomly manipulating the time duration of a job in Fig-
ure 4. In both job sequences, the 2nd job should be processed
first, because the dominant resource of 1st job (memory) will
completely block the use of a resource type [5]. By reducing
the length of job #1, we can trick DeepRM into believing the
job is a short job and thus should be prioritized, because it
has not seen many short jobs that require more dominant
resources.
Generative Adversarial Networks (GANs) are commonly

used to generate adversarial examples [16]. The application
of GANs to DeepRM is promising, yet difficult because the
generated input state needs to be meaningful, e.g. adjacent
CPU and RAM occupancy, and simultaneous execution of
jobs in CPU and RAM. Indeed, creating adversarial examples
with restrictions remains to be an open problem in machine
learning communities.
4.2 Heterogeneous environments
Control logic in systems often need to operate under hetero-
geneous environments and workloads, especially when the
logic cannot be updated easily (e.g., hardwired in hardware,
or hard-coded in software application). Conventional rule-
based logic is amenable to analysis of would perform in a
different environment, so even if the logic cannot be changed,
developers still have the ability to predict failures or degra-
dation. In contrast, machine learning-based algorithms can
optimize performance for workloads drawn from the same
distribution as the training data, but for the algorithm to

carry over to a different environment requires the additional
transferability. Unfortunately, DNNs are generally believed
to have poor transferability: a DNN can fail miserably when
tested against data draw from an unseen distribution, even
when it is simple enough to be handled by simpler alterna-
tive models [16]. The DNN’s opacity also makes it difficult
to understand its transferability.

In our experiments over DeepRM, we found it is relatively
easy to generate a job sequence that makes it fail miser-
ably by changing the parameters of the generative model of
training data. DeepRM may perform even worse than the
shortest-job-first (SJF) strategy when tested against jobs of
unseen distributions of job sizes or arrival intervals. We be-
lieve other DNN systems in Table 1 will underperform if the
test environment deviates from the training environment.
In fairness, previous work did strive to ensure DNNs are

trained on representative workload and test their generaliz-
ability under different workloads [11]. In fact, one advantage
of high-dimensional models like DNNs is its ability to train
on a large amount of data from different sources. Despite
these “best effort” practices, we still need a systematic ap-
proach to understanding the transferability of DNNs trained
in networking settings.

4.3 Research thrusts
It is crucial that before deploying any DNN-based decision-
making logic, we know its adversarial examples and in what
environment will the DNN fail. We conclude this section by
the the following question.

Can we stress test any DNNs in networking/sys-
tems by automatically generating test examples
inspired by real networking/systems scenarios?

Mathematically, the process of creating adversarial exam-
ples is fairly intuitive. Given an input x, a DNN that maps x
to an output y = f (x), and any target output y′(, y), we can
create an adversarial example by finding d that minimizes
| |d| |, subject to f (x+ d) = y′, i.e., we can create an adversar-
ial example x + d that tricks the DNN to make any decision
y′ by making a small change d on a seen input. Generating
DNN adversarial examples has attracted much attention in
ML community, but most techniques [13] are derived from
the aforementioned formulation.
Where domain knowledge is needed: Unfortunately, the
above formulation cannot be directly used to generate ad-
versarial examples that make sense in networking. In image
classification, adding pixel-level noises to an image is un-
likely to alter its real label, i.e., the real label of x + d is not
y′. But changing a systems state even slightly may funda-
mentally change the best decision, so the generated example
x + d may well map to the targeted action y′, which means
the adversarial example is not adversarial after all. Moreover,
we need domain knowledge to make sure the adversarial

5

APNet ’18, August 2–3, 2018, Beijing, China Y. Zheng et al.

examples are “meaningful”, rather than contrived cases that
will rarely occur in practice.

5 MACHINE-GENERATED ALGORITHMS
TO RULE IT ALL?

So far our discussion has focused on DNN itself. Similar
to other domain-agnostic methods, DNNs can benefit from
learning from domain-specific knowledge. In this section, we
introduce a method in networking and systems to illustrate
how integrating DNNs with domain knowledge can improve
their transferability, robustness, and training efficiency.

5.1 Integrating domain knowledge is the key
Many weaknesses of DNN-based solutions can be mitigated
using domain-specific knowledge.
Better transferability: By nature, domain-specific policies
will not be biased by training data, so domain-specific poli-
cies can potentially help prevent DNNs from overfitting the
training data that are not representative for the targeted
environment. For instance, one can prevent DeepRM from
overfitting the training workload by setting a new objec-
tive that maximizes rewards on the training workload while
imitating a more generalizable domain-specific policy (e.g.,
shortest job first).
Better robustness: In systems problems, the penalties of
making certain decisions is not immediately observable or
directly measurable, so machine-learning strategies like deep
reinforcement learning cannot straightforwardly minimize
these penalties by explicit objectives. For instance, large-
scale systems often maintain resource utilization below cer-
tain threshold (e.g., 80%) to tolerate busty traffic or compo-
nent failures, but these cases are so rare that can easily be
ignored or “averaged out” by DNNs optimizing for the mean
performance.
Better training efficiency: Given its enormous number of
parameters, deep reinforcement learning naturally require
substantial amount of simulation and training data to con-
verge. By leveraging domain knowledge, one could preclude
decisions that are suboptimal based on domain knowledge,
thus substantially reducing the search space of exploration
and increasing the training efficiency.

5.2 Regulating DNNs with domain
knowledge

One basic strategy to integrate domain-specific knowledge
in DNNs is to use the output of a domain-specific policy to
regulateDNN training process, so that the resulting DNNwill
jointly optimize the loss function while imitating as much
as possible the behavior of a domain-specific policy. Here,
we briefly describe a state-of-the-art of DNN regularization
technique [6].
The basic idea is to use two processes, called “teacher”

and “student”, to regulate the training of a DNN f with a

domain-specific logic д [6]. Both f and д take input x and
output a probability distribution y over the action space;
if the domain-specific logic is deterministic, д(x) will be a
one-hot distribution. At a high level, “teacher” uses logic
rules to refine the behavior of д and obtain a different neural
network l , while “student” trains f such that it minimizes
the difference to the ground truth as well as the difference
to the output of д. More details are omitted due to limited
space.

To see this approach in action, we take resource allocation
as an example, and integrate the shortest-job-first style logic
as the domain-specific policy in the training of DeepRM.
The intuition is that DeepRM might aggressively withhold
jobs with the assumption that smaller jobs always arrive in
the same frequency as the training data, whereas shortest-
job-first logic makes minimal assumption on the workload
and so is more generalizable, albeit less performant. By pe-
nalizing DeepRM when it deviates from shortest-job-first
logic (e.g., withhold a job when there is resources to run it)
with only marginal performance gain, this process maymake
DeepRM more reliable while consistently performing better
than shortest-job-first logic on different workloads. The key
challenges are how the experience of resource scheduling
can be extracted as logic rules and how they are mapped
into a good teacher. Despite that the domain-specific knowl-
edge is versatile among different networking applications,
the rationale of integrating human knowledge into neural
network is generic.

5.3 Research thrusts
Inspired by the initial successes, we hope to bring more
domain-specific knowledge to harden the DNNs in network-
ing/systems.

How to systematically integrate domain knowl-
edge of networking/systems in DNNs without sac-
rificing their superior performance?

Other areas, e.g., natural language processing, have paid
tremendous efforts and showed great benefits in doing that [4].
Networking and systems research does have so many invalu-
able lessons and principles that this community should strive
to distill and apply in the new DNN-based approaches.

6 CONCLUSION
Deep neural networks are here to stay. Instead of treating
DNNs as black boxes, this paper argues that we should de-
velop techniques and leverage domain-specific insights to
strive to interpret the DNNs trained in networking settings.
This is not only driven by the recent drive towards inter-
pretable ML, but more importantly, motivated by the need in
many networking settings for solutions to be explainable and
robust. Our preliminary results barely scratch the surface
of this daunting task, but we hope to inspire more efforts in
the community.

6

Demystifying Deep Learning in Networking APNet ’18, August 2–3, 2018, Beijing, China

REFERENCES
[1] Interpretable ML Symposium (NIPS 2017). http://interpretable.ml/.
[2] D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. W.-D. Ma, and

B. McWilliams. The shattered gradients problem: If resnets are the
answer, then what is the question? In International Conference on
Machine Learning, pages 342–350, 2017.

[3] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-
layer features of a deep network. University of Montreal, 1341(3):1,
2009.

[4] M. V. França, G. Zaverucha, and A. S. d. Garcez. Fast relational learn-
ing using bottom clause propositionalization with artificial neural
networks. Machine learning, 94(1):81–104, 2014.

[5] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple re-
source types. In NSDI, volume 11, pages 24–24, 2011.

[6] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing. Harnessing deep neural
networks with logic rules. In Proc. of ACL 2016, volume 1, pages
2410–2420, 2016.

[7] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang. Cfa:
A practical prediction system for video qoe optimization. In NSDI,
pages 137–150, 2016.

[8] Z. Lipton. The mythos of model interpretability. icml 2016 workshop
on human interpretability in machine learning (whi 2016), 2016.

[9] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[10] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource manage-
ment with deep reinforcement learning. In Proc. of ACM Workshop on
HotNets 2016, pages 50–56. ACM, 2016.

[11] H.Mao, R. Netravali, andM. Alizadeh. Neural adaptive video streaming
with pensieve. In Proc. of ACM SIGCOMM 2017, pages 197–210. ACM,
2017.

[12] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as
a defense to adversarial perturbations against deep neural networks.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 582–597.
IEEE, 2016.

[13] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 1–18. ACM, 2017.

[14] R. S. Ramprasaath, C. Michael, D. Abhishek, V. Ramakrishna, P. Devi,
and B. Dhruv. Grad-cam:visual explanations from deep networks via
gradient-based localization. In International Conference on Computer
Vision. IEEE, 2016.

[15] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus. Intriguing properties of neural networks. In
International Conference on Learning Representations, 2014.

[17] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to route.
In Proc. of ACM HotNets 2017, pages 185–191. ACM, 2017.

[18] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy. A deep reinforce-
ment learning based framework for power-efficient resource allocation
in cloud rans. In Proc. of IEEE ICC 2017, pages 1–6. IEEE, 2017.

[19] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-
tional networks. In European Conference on Computer vVsion, pages
818–833. Springer, 2014.

7

http://interpretable.ml/

	Abstract
	1 Introduction
	2 Why is interpretability crucial?
	2.1 Early promises of DNNs
	2.2 Concerns of treating DNNs as blackboxes

	3 Why DNN makes the decision?
	3.1 Important features
	3.2 From input to high-level features
	3.3 Research thrusts

	4 Will it fail miserably?
	4.1 Adversarial input states
	4.2 Heterogeneous environments
	4.3 Research thrusts

	5 Machine-generated algorithms to rule it all?
	5.1 Integrating domain knowledge is the key
	5.2 Regulating DNNs with domain knowledge
	5.3 Research thrusts

	6 Conclusion
	References

