
376 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

Enabling Robust DRL-Driven Networking Systems
via Teacher-Student Learning

Ying Zheng , Student Member, IEEE, Lixiang Lin, Tianqi Zhang, Haoyu Chen,

Qingyang Duan , Yuedong Xu , and Xin Wang

Abstract— The past few years have witnessed a surge of interest
towards deep reinforcement learning (DRL) in computer net-
works. With extraordinary ability of feature extraction, DRL has
the potential to re-engineer the fundamental resource allocation
problems in networking without relying on pre-programmed
models or assumptions about dynamic environments. However,
such black-box systems suffer from poor robustness, showing
high performance variance and poor tail performance. In this
work, we propose a unified Teacher-Student learning framework
that harnesses rich domain knowledge to improve robustness. The
domain-specific algorithms, less performant but more trustable
than DRL, play the role of teachers providing advice at critical
states; the student neural network is steered to maximize the
expected reward as usual and mimic the teacher’s advice mean-
while. The Teacher-Student method comprises of three modules
where the confidence check module locates wrong decisions
and risky decisions, the reward shaping module designs a new
updating function to stimulate the learning of student network,
and the prioritized experience replay module to effectively utilize
the advised actions. We further implement our Teacher-Student
framework in existing video streaming (Pensieve), load balancing
(DeepLB), and TCP congestion control (Aurora). Experimental
results manifest that the proposed approach reduces the per-
formance standard deviation of DeepLB by 37%; it improves
the 90th, 95th, and 99th tail performance of Pensieve by 7.6%,
8.8%, and 10.7% respectively; and it accelerates the growth rate
of Aurora by 2x at the initial stage, and achieves a more stable
performance in dynamic environments.

Index Terms— Deep reinforcement learning, networking
systems, teacher-student learning.

I. INTRODUCTION

INSPIRED by recent successes of deep reinforcement learn-
ing (RL) in the machine learning community [1], [2], the

conventional computer networking field begins to embrace

Manuscript received June 16, 2021; revised September 11, 2021; accepted
October 31, 2021. Date of publication November 10, 2021; date of cur-
rent version December 17, 2021. This work was supported in part by the
Natural Science Foundation of China under Grant 61772139 and Grant
62072117 and in part by the Key-Area Research and Development Program of
Guangdong Province under Grant 2020B010166003. (Corresponding author:
Yuedong Xu.)

Ying Zheng, Haoyu Chen, and Xin Wang are with the School of
Computer Science, Fudan University, Shanghai 200438, China (e-mail:
zhengy18@fudan.edu.cn; haoyuchen17@fudan.edu.cn; xinw@fudan.edu.cn).

Lixiang Lin, Qingyang Duan, and Yuedong Xu are with the School of
Information Science and Technology, Fudan University, Shanghai 200438,
China (e-mail: lxlin19@fudan.edu.cn; ydxu@fudan.edu.cn).

Tianqi Zhang is with the School of Mathematical Science, Fudan University,
Shanghai 200438, China (e-mail: tianqizhang18@fudan.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2021.3126085.

Digital Object Identifier 10.1109/JSAC.2021.3126085

this new technique to conquer resource allocation problems.
Representative applications include job scheduling [3], [4],
congestion control [5], adaptive video streaming [6]–[9], and
routing [10], [11]. The advantages of DRL in networking
are twofold. One is the excellent feature extraction ability in
dynamic environments. For instance, the job arrival rate and
job size are stochastic, the bandwidth available to a user is
time-varying. They cannot be accurately predicted by simple
machine learning models because their dynamics is further
influenced by various network functionalities. Another intrigu-
ing merit is that DRL offers an end-to-end mechanism for
designing networking systems. Simply taking the observable
state as input to neural networks, DRL is able to explore very
large design space and yield a control policy via a black-
box. It lowers down the technical know-how requirement of
network operators, thus accelerating the deployment of system
prototypes.

Despite the improved performance, these learning-based
systems operate in a black-box mode which relies on opaque
data-driven models. The lack of interpretability makes it
difficult to completely trust that these deep models will per-
form well in real environments, and to debug a problematic
decision [12]. For instance, the DRL agent in load balancing
may place a short job to an overwhelmed server, which is
wrong; it may leave one or more servers idle, expecting
the future arrival of jobs to be short, which is risk-seeking.
The wrong decisions will degrade the overall performance of
DRL, and the risky decisions, though beneficial to the average
performance, are inclined to cause large performance variance
or degrade tail performance [13]. Therefore, the network
operators tend to distrust a decision-making process when
the wrong decisions and performance tails have high-stake
consequences.

In this paper, we tackle the robustness problem of DRL in
representative networking systems. The basic idea is to harness
the rich domain knowledge to guide the decision-making of
DRL. Though imperfect and less performant, the domain-
specific rules can be utilized to identify the problematic
actions of DRL and provide action advice accordingly. What
we pursue is not an ad hoc approach for each individ-
ual networking system, but a general framework across
them. The desirable properties include: i) high confidence
in which domain knowledge can diagnose the problematic
actions; ii) modularity where this framework is not reliant
on specific DRL training as well as inference algorithms;

0733-8716 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8823-2460
https://orcid.org/0000-0002-9268-1979
https://orcid.org/0000-0003-4168-3998

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 377

iii) minimal intervention that the ratio of the actions advised
by domain knowledge to the total actions should be kept
small.

We model the DRL-empowered networking systems based
on Markov decision processes (MDPs) with input-driven
environments similar to [14]. The root cause of undesirable
performance lies in the dynamic networking environment
such as time-varying bandwidth and stochastic job arrivals.
We define two types of actions, namely wrong decision and
risky decision that affect the average performance and its
variance in the input-driven MDPs. We theoretically show
that the wrong decisions degrade average performance and the
risky decisions increase performance variance. In practical net-
working systems, reinforcement learning is embraced to tackle
the complicated Markov decision problems in a model-free
mode. This imposes great difficulties to pinpoint the wrong
and risky decisions precisely. Inspired by [15], we propose a
novel and universal Teacher-Student framework to improve the
robustness of DRL-based networking systems. The teacher is a
small set of simple white-box logic rules that are specified by
domain-specific algorithms or human engineers. The student is
an independent DRL agent but is infused with teacher’s advice.
Three key components are developed, including confidence
check for locating critical states, reward shaping for injecting
teaching data into student network and prioritized experience
replay for coping with the challenge of limited teaching data.

We implement our Teacher-Student framework in three
systems: Pensieve [6] for video streaming, DeepLB for load
balancing, and Aurora [5] for TCP congestion control. The
teachers are chosen to be the buffer-based algorithm [16],
the shortest processing time algorithm and TCP BBR [17],
respectively. Comprehensive experiments manifest that our
method improves the tail performance (almost) or reduces
the variance without sacrificing the average performance, thus
making the DRL agents more robust. In particular, the real-
world evaluation in Pensieve shows that the 90th, 95th and
99th percentile QoE values are improved by 7.6%, 8.8% and
10.7%. When taking the shortest processing time algorithm
as the benchmark, our method reduces the standard deviation
of DeepLB job processing time by 37%. In NS3 simulations,
our method improves the response speed of TCP Aurora (by
nearly 2x faster) at the initial climb-up stage, and demonstrates
gentle improvements in both the bandwidth utilization and the
round-trip time in dynamic network environments.

The contributions are summarized below:

• We introduce the robustness problem of DRL-driven
networking systems that is essentially originated from the
lack of interpretability of deep neural networks and the
high-dimensional state-action space of RL.

• We define the wrong and risky decisions for a RL
agent, and theoretically show that the wrong decisions
degrade average system performance, while risky deci-
sions increase performance variance.

• A Teacher-Student framework is proposed to inte-
grate domain knowledge to deep neural network based
networking systems, in which the key components
are (i) Confidence Check for locating critical states,

(ii) Reward Shaping for incorporating domain knowledge,
and (iii) Prioritized Experience Replay for efficient
training.

• We evaluate the proposed framework in three classi-
cal systems: video streaming with both simulated and
real-world implementations across four datasets, load bal-
ancing with a simulated system and TCP congestion con-
trol with an emulated system. The experimental results
manifest the effectiveness of the proposed methods.

The rest of this paper is organized as follows. We first
introduce the background in section II and motivation in
section III-A. We present the system model in section IV,
in which the wrong and risky decisions are modeled formally.
In section V, we introduce three key components in the pro-
posed Teacher-Student framework. We evaluate our algorithms
and analyze the evaluation results in section VI. The related
work is provided in section III-B. Some open problems about
the proposed method are discussed in section VII. Finally,
we conclude the paper in section VIII.

II. PRELIMINARIES

A. Deep Reinforcement Learning

The standard RL problem is formalized as a discrete time
MDP described by a tuple < S,A, p, r, γ > [18], where S is
the state space, A is the action space, p(s′|s, a) represents the
probability of entering state s′ when the agent takes action a
at state s. r : S×A → R is the reward function. γ ∈ [0, 1] is a
discounted factor that indicates how much the agent value an
immediate reward compared to future rewards. π : S × A →
[0, 1] is a policy that describes the probability distribution over
all actions at a given state. τ = (s0, a0, r0, s1, a1, r1, · · ·) is a
trajectory, and τ ∼ π indicates the distribution over trajectories
depends on π. In following sections, for the convenience of
proof, we omit reward r in the trajectory τ and use the form
of state-action pairs, i.e. τ = {(s0, a0), (s1, a1), · · · }.

The agent and the environment interact at discrete time
steps, t = 0, 1, 2, · · · . At each time step t, the RL agent
observes state st ∈ S, and selects an action at ∼ π(·|st) ∈ A.
Following this action, the RL agent receives a reward rt and
the state of environment transits to st+1 ∼ p(·|st, at). The
goal of RL is to find the optimal policy π∗ that maximizes the
expected cumulative reward:

max
π

Eτ∼π[
∞∑

t=0

γtr(st, at)] (1)

The expectation is taken over a random policy π. The policy
π defines a probability distribution based on which an action
is chosen. On the contrary, a deterministic policy selects a
single action per state. In DRL settings we often use a series
of parameters, i.e. neural networks, to approximate policy π
so that it is often rewritten as πθ .

To solve the MDP problem, the concepts of state-value
function and action-value function are introduced. The state-
value function of a state st is the expected cumulative reward
starting from st and thereafter following policy π. Formally,

vπ(st) = Eτ∼π[
∞∑

k=0

γkr(st+k, at+k)|st] (2)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

378 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

Similarly, the action-value function for policy π, qπ(st, at),
is defined as:

qπ(st, at) = Eτ∼π[
∞∑

k=0

γkr(st+k, at+k)|st, at] (3)

The reinforcement learning algorithms can be divided into
two categories, value-based and policy-based algorithms. The
policy-based algorithms directly output the probability dis-
tribution based on which the action is chosen. The policy-
based algorithms are suitable for both discrete and continuous
actions, e.g. REINFORCE [19] and PPO [20]. The value-based
methods output the value function of the state action pair,
and the action corresponding to the highest value function
is more likely to be selected. Value-based methods are only
suitable for discrete actions such as Q-learning, DQN [2]
and many variants [21]. Besides, the Actor-Critic algorithm
combines policy-based and value-based methods. In this paper,
we choose to study the PPO and Actor-Critic algorithms
because of their good performance and wide adoption in
networking.

B. DRL in Video Streaming

Adaptive streaming is the predominant form of video deliv-
ery service nowadays. A video is subdivided into a sequence
of chunks, each of which contains 2∼4 seconds of content
and is encoded in multiple bitrates. The higher bitrate means
the better video quality. Client-side video players employ
bitrate adaptation algorithms to automatically select the chunk
bitrates that match the achievable throughput. For instance,
the buffer-based algorithm (BBA), the classical rule based
policy, uses the buffer length to guide the bitrate selection.
When the client-side buffer length is below (above) the min-
imum (maximum) threshold, the lowest (highest) bitrate is
requested. Otherwise, the requested bitrate increases roughly
linearly to the buffer occupancy. However, simple logic rules
such as BBA need delicate parameter configurations, like the
two thresholds mentioned above. They are usually myopic
to the current system state, while largely overlooking the
dynamics of user throughput in the recent past and the deep
interplay between the system state and the bitrate adaptation.

Pensieve [6] tackles this challenge by using DRL technique
to generate bitrate selection. As shown in Fig. 1, Pensieve’s
state consists of recent chunk throughput, buffer sizes and
actions. Pensieve’s action is the bitrate of next video chunk.
The goal of Pensieve is to maximize the quality of experience
(QoE), a metric consisting of video quality and playback
fluency that directly reflects the perception of users. Pensieve
trains its neural network using the Asynchronous Advantage
Actor Critic (A3C [22]) algorithm. See [6] for more details.

C. DRL in Load Balancing

In a load balancing system, there is one master and multi-
ple working servers. The master appropriately allocates the
incoming jobs according to a scheduling policy. Then the
server would execute the allocated jobs in a first-in-first-out
(FIFO) manner. An effective scheduling algorithm adjusts the
scheduling decisions according to the running status of current

Fig. 1. An example state of Pensieve.

Fig. 2. An example state of DeepLB.

Fig. 3. An example state of Aurora.

system with the hope of minimizing average job completion
time (JCT) consisting of waiting time and processing time. The
conventional scheduling algorithms require experts to man-
ually configure many parameters. Furthermore, the heuristic
logic needs to be re-adjusted upon the changes of environ-
ments, e.g. the job arrival patterns. Currently a promising trend
is to use deep neural network based algorithms to achieve end-
to-end load balancing.

DeepLB: DeepLB is a DRL-based application that we create
based on the load balancer in [14]. The difference between
DeepLB and the original version is that the latter does not
consider the elapsed time of processing the head of line job in
each queue. Omitting this feature will cause the performance
degradation in both the DRL model and in the heuristic
algorithm. Therefore, we redesign the input state and train
a new RL agent named DeepLB. Suppose there are k servers
in the load balancing system. At each decision point t, the
RL agent observes state st = (j, q1, q2, · · · , qk), where j is
the size of the incoming job, qk is the sum of kth queue
size and the remaining size of the current executing job. The

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 379

RL agent choose an action a ∈ {1, 2, · · · , k}, indicating the
incoming job is allocated to a server, based on this observed
state. This policy is often approximated by a neural network
due to the huge state space. When a new job arrives at ti,
the reward is calculated by ri = −(ti − ti−1) × n, where
n represents the number of active jobs in the system during
period [ti−1, ti], ti−1 is the timing of the last event. Both the
arrival and completion of jobs will trigger the calculation of
reward. In addition, DeepLB uses Actor-Critic algorithm to
train its policy.

D. DRL in TCP Congestion Control

TCP congestion control is a natural test field of DRL. Owing
to the complicated interaction between the senders and the
dynamic environment, the traditional algorithms such as TCP
CUBIC [23] and TCP BBR [17] may cause the bufferbloat
or underutilize the bandwidth. DRL enables a TCP sender to
learn its transmission rate from experience in which the up-
to-date DRL congestion controller is TCP Aurora [5].

TCP Aurora uses Proximal Policy Optimization (PPO [20])
as the training algorithm. The state space contains a sequence
of network states in the past k monitor intervals. Each network
state is a 3-tuple: (i) latency gradient, the derivative of latency
with respect to time; (ii) latency ratio, the ratio of mean latency
at the current monitor interval to minimum observed mean
latency in the history; and (iii) sending ratio, the ratio of
transmitted packets to the acknowledged packets. The action
space of Aurora is continuous, other than a finite enumerable
action space to adjust congestion window size. The action is
absorbed as a scaling factor to tune the source sending rate
that is implemented through TCP pacing. The reward of a
TCP sender is the linear combination of throughput, round-trip
delay and packet loss ratio. In terms of their inner workings,
BBR and Aurora are very similar, i.e. adjusting the sending
rate according to the observed network status. The difference
lies in that the former uses the bandwidth delay product to
tune the sending interval at the packet granularity, and the
latter uses a simple neural network to infer the sending rate at
each time interval. Let xt be the sending rate, at be the action
at time t, and α be a constant. The control logic of Aurora
is

xt =

{
xt−1(1 + αat), at > 0
xt−1/(1− αat), at < 0.

(4)

III. MOTIVATION

A. Motivating Examples

DRL agents make decisions via a black-box manner. The
statistical performance gains often camouflage the deep under-
standing of their inner-workings. Kazak and Kazak in [24]
verified multiple DRL-driven networking systems, exposing
scenarios where undesirable behavior may appear. In addi-
tion, various counter-examples were generated accordingly.
We hereby argue that the DRL models can be wrong and may
take risky actions to gain more rewards. The wrong and risky
decisions exist in almost all the networking applications in
which the load balancer is a superb example for demonstration.

Fig. 4. Wrong decision and risky decision examples in load balancing.

1) Wrong Decision: The incoming short job is assigned
to the worker where some long jobs have been waiting in
the queue (Fig.4a). The length of the blue blocks represents
the processing time of jobs. Since DeepLB is purposed to
minimize the average processing time of all the jobs, a proper
strategy is to place this short job to the server with a few short
jobs, hence the previous action is a wrong decision.

2) Risky Decision: Suppose that one server is idle and
the others have buffered jobs. An incoming long job is not
assigned to this idle worker, but is placed at a queue already
with long jobs in the front (Fig.4b). DeepLB makes this
non-work-conserving decision by expecting the future arrivals
would be short jobs.

The wrong decision and the risky decision play different
roles in the decision making of DRL. The former lowers down
the average performance, while the latter “entices” the agent
to improve the average performance while possibly sacrificing
the tails or increasing the variation of performance. Knowing
these abnormal decisions requires profound domain knowledge
that refers to either the direct human perception or the classical
rule-based algorithms.

The domain knowledge in networking is far imperfect.
It might tell a tiny fraction of the wrong decisions using only
low-dimensional information (e.g. queue lengths in DeepLB
and playback buffer length in Pensieve), and can hardly gauge
risky decisions in more complicated scenarios. Meanwhile, the
reward of the actions suggested by rule-based algorithms can-
not be acquired immediately, e.g. the average JCT of DeepLB
is measured for a sequence of jobs. In what follows, we aim
to put forward a unified DRL framework that can harness the
imperfect domain knowledge in networking systems.

B. Related Work

Research on the robustness of DRL-driven networking
systems can be roughly divided into the following three
categories:

• Guided Exploration: This type of work focuses on train-
ing a DRL agent with the participation of traditional
algorithms. For example, Salma et al. proposed Eagle,
which used a rule-based algorithm, BBR, to generate
action advice and put it into the training of the DRL
agent, thereby accelerating the training process and fur-
ther optimize the decision policy [25]. Although Eagle
achieves better performance than most of the comparing

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

380 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

algorithms, it has difficulty outperforming BBR algorithm
that provides action advice. This is essentially different
from our work, which aims to guide a more robust DRL
agent even with the teaching algorithm inferior to the
DRL student.

• Interpretability Analysis: Zheng et al. analyzed causality
between input and output of a DRL-driven job scheduling
system by inspecting the active status of inner neurons
[12]. Meng et al. converted the learning-based networking
systems into decision trees with clearer decision logic,
reducing the long delay caused by the complex calcula-
tions of neural networks [26], [27].

• Switching Between DRL Agent and Traditional Algo-
rithms: Soheil et al. proposed a DRL agent making
decisions to adjust the congestion window at regular time
intervals, and the Cubic algorithm was used in each time
interval [28]. Mao et al. proposed to use a rule-based
algorithm to replace the decisions made by DRL agent
when changes over network conditions are detected,
hence helping the DRL agent adapt to dynamically
changing network environment faster [29]. However, the
goal of our work is to automatically incorporate domain
knowledge and hence enabling a more robust DRL agent.
Thus, a new Teacher-Student framework is needed.

Apart from the aspect of networking systems, robust rein-
forcement learning has been comprehensively studied in the
literature. The core of robust RL is to avoid or modify the
actions taken by an agent at certain states so that it will not
enter unsafe states [30]. Safe RL is usually realized via two
approaches. One is modifying the risk-neutral objective func-
tion to be risk-sensitive. Instead of maximizing the expected
return, [31], [32] adopt an expected-exponential criterion
whose Taylor expansion is essentially a sum of expected return
and variance of return. The variance minimization problem
of a discrete-time discounted MDP is studied in [33], whose
discounted performance is equal to a given constant. The risk
of a policy can be transformed into one or more constraints to
the original MDP problem so that the robust decision-making
becomes a constrained MDP problem [34], [35]. Despite their
theoretical soundness, these methods usually demand accurate
MDP models that are hard to obtain in practical networking
systems.

The other is providing external knowledge to adjust the
exploration behavior of the agent. The external knowledge
gathered from experts or previous demonstrations can be lever-
aged to generate a good “initialization” of learning algorithms,
e.g. [36], [37]. The irrelevant regions of the states and action
spaces will be explored less from the earliest steps of the
learning process, thus accelerating the convergence of the
learning algorithms. The external knowledge in the form of
teacher advice can further be used to improve the exploration
during the learning process. In such robust RL systems, there
exist a teacher and a learning agent. At every step, the
learning agent performs as usual, and the teacher monitors
the learning process and interacts with the learning agent
by providing action advice or related information. Clouse
proposed an integration method of apprentice learning and

reinforcement learning in which the learner can improve its
policy based on rewards and on actions provided by human
or a controller [38]. Garcia and Fernandez considered the RL
problem with a dangerous and high-dimensional state-action
space in which avoiding or minimizing damage caused by the
explorations are emphasized [39]. Two new components for
safe exploration are introduced: a risk function to evaluate
the danger of a particular state and a baseline behavior that
produces the suggested safe actions.

The Teacher-Student framework in this paper falls in the
scope of external knowledge intervention. The teacher is not
human, but a domain-specific algorithm that is able to identify
a fraction of wrong or risky actions and provides suboptimal
albeit safe actions.

IV. SYSTEM MODEL

In this section, we first introduce the concept of MDP
with an input stochastic process, after which the wrong and
risky decisions are formally defined. Then we propose the
theoretical analysis on the system performance influenced by
these problematic decisions. Finally we present the overall
Teacher-Student framework.

A. MDP With an Input Stochastic Process

For most of the networking systems driven by DRL, the
state transition depends on not only state-action pairs, but
also the dynamic of environment, e.g. network bandwidth, job
arrivals, which is termed input-driven environments, resulting
an input-driven MDP [14]. We use a discrete-time input
process z = {z(t), t = 0, 1, 2 · · · } to denote the external input
process, which is unknown in prior. A sample path of the
input process is denoted by ω = (ω0, ω1, · · ·), ω ∈ Ω, where
Ω represents all possible sample paths. A graphic model of
input-driven MDP is shown in Fig. 5. The choice of actions is
the same as the standard MDP, which depends on policy π(·|s)
and the current system state. While the calculation of state
transition function p(·|s, a, z) and reward function r(s, a, s′, z)
also need to consider the impact of the input value, in addition
to the state-action pair.

With the influence of the input process z = {z(t), t =
0, 1, 2 · · · }, we rewrite the expression of state-value function
vπ(st) (Eq. (2)) and action-value function qπ(st, at) (Eq. (3))
as

vπ,z(st) = Eπ,z[
∞∑

k=0

γkr(st+k, at+k)|st], (5)

where the expectation is taken over the random policy. Simi-
larly, the action-value function for policy π, is defined as:

qπ,z(st, at) = Eπ,z [
∞∑

k=0

γkr(st+k, at+k)|st, at]. (6)

B. Wrong Decisions and Risky Decisions

In section III-A, we describe the motivating examples
of wrong and risky decisions. We next present the formal
definitions of them.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 381

Definition 1 (Wrong Decisions): Let s represent the state
observed by the agent at time step t, based on which the agent
selects an action a. We call action a wrong decision at state s
if there exists an another action a′ such that qπ,z(s, a) <
qπ,z(s, a′) holds for arbitrary π and z. Furthermore, the
corresponding (s, a) is called a wrong state-action pair.

Remark: From Definition 1 we obtain Eπ,z[qπ,z(s, a)] <
Eπ,z[qπ,z(s, a′)]. In other words, the wrong decision is not the
optimal one when the agent regards maximizing the expected
return as a goal.

Theorem 1: For a trajectory τ = ((s0, a0), (s1, a1), · · ·)
with a set of wrong state-action pairs Dτ ⊂ τ , there always
exists a set of state-action pairs Dc such that the agent can
gain more cumulative reward by executing the state-action
pairs in Dc instead of Dτ .

Proof: For the trajectory τ containing wrong state-action
pairs, we divide it into two segments: τ1 = ((s0, a0), (s1, a1),
· · · , (sm−1, am−1)) and τ2 = ((sm, am), (sm+1, am+1), · · ·)
with (sm, am) is the first wrong state-action pair that appears
in trajectory τ . Given an input value sequence z, the expected
cumulative reward can be calculated as

Jπ = Eπ,z[
∞∑

t=0

γtr(st, at)]

= Eπ,z[
m−1∑
t=0

γtr(st, at) +
∞∑

t=m

γtr(st, at)]

= Eπ,z[
m−1∑
t=0

γtr(st, at)] + Eπ,z [
∞∑

t=m

γtr(st, at)]

= Eπ,z[
m−1∑
t=0

γtr(st, at)] + qπ,z(sm, am). (7)

Definition 1 indicates ∃a′
m such that qπ,z(sm, am) <

qπ,z(sm, a′
m). Let Dc = {(sm, a′

m)}, Eq. (7) becomes:

Jπ = Eπ,z[
∞∑

t=0

γtr(st, at)]

≤ Eπ,z

m−1∑
t=0

γtr(st, at) + qπ,z(sm, a′
m)

= Jπ′ . (8)

Furthermore, we could separate τ2 in the similar way,
obtaining a Dc with more state-action pairs. Eq. (8) man-
ifests that choosing state-action pairs in Dc would receive
more expected cumulative reward. Theorem 1 indicates wrong
decisions degrade overall average performance. �

Definition 2: Let vπ(s) be the total reward in a real-
ization of MDP starting from state s thereafter follow-
ing policy π. The variance of an MDP with an input
process {z(t), t = 0, 1, 2 · · · } is defined as Var[vπ,z(s)] =
E[vπ,z(s)2]- E[vπ,z(s)]2.

Definition 3 (Risky Decisions): Considering an MDP with
a discrete-time input process {z(t), t = 0, 1, 2 · · · }, the
observed state at time step t is s, we call a′ at state s is a risky
decision with respect to a if Ez [qπ,z(s, a)] ≤ Ez [qπ,z(s, a′)],
Var[rs,s′ |s, a] ≤ Var[rs,s′ |s, a′] for arbitrary s′ ∈ S, where
a, a′ ∈ As, and As is the available actions at state s.

Remark: According to Definition 3, there exists a special
case that the action is a risky decision with respect to itself,
i.e. Eπ,z[qπ,z(s, a)] = Ez[qπ,z(s, a′)] and Var[rs,s′ |st, a] =
Var[rs,s′ |s, a′] with a = a′. It is not our focus and we ignore
this case. In addition, it can be inferred from Definition 3 that
the risky decision is possible but not necessarily the optimal
decision.

Proposition 1: Given two policy π and π′, the only differ-
ence is that policy π′ selects a risky decision a′ while policy π
selects the safer counterpart, i.e. action a, at state s determin-
istically, then we get Jπ ≤ Jπ′ , i.e. Eπ,z

∑∞
t=0 γtr(st, at) <

Eπ′,z
∑∞

t=0 γtr(st, at)
We omit the proof of Proposition 1 here. It is natural

that, from the definition of risky decisions, choosing a risky
decision at a specific state s would gain more expected
cumulative reward, thus better average system performance.
Next we provide a formal definition of the variance of MDP
with input processes.

Theorem 2: Given the current system state s, available
action set As and input process {z(t), t = 0, 1, 2 · · · },
if ∃a, a′ ∈ As, where action a′ is a risky decision w.r.t. action
a, choosing risky action a′ increases the variance of MDP.

Proof: Let σ2
π,z(s) represent the variance of cumulative

reward starting from state s under the guidance of policy π
and σ2

π,z(s, s′) represents the variance of reward received from
the transition from state s to state s′. We rewrite σ2

π,z(s) and
σ2

π,z(s, s′) as σ2
s , σ2

ss′ for simplicity, respectively. In addition,
we assume a finite state space S with |S| = N in the following
proof.

From Eq. (6) in [40], we know that for an arbitrary state
s ∈ S, the following equation holds:

σ2
s =

∑
s′∈S

pss′ [σ2
ss′ + γ2σ2

s′ + (rss′ + γv2
s′)]− v2

s (9)

This system of linear equations can be rewritten as the form
Ax = b, where the coefficient matrix A = I − γ2P , and P is
the transition probability matrix. Specifically,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− γ2p11 −γ2p12 · · · −γ2p1N

−γ2p21 1− γ2p22 · · · −γ2p2N

...
. . .

−γ2pi1 −γ2pi2 · · · −γ2piN

...
. . .

−γ2pN1 −γ2pN2 · · · 1− γ2pNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1

σ2
2
...

σ2
i
...

σ2
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

...
bi

...
bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where bi =
∑N

j=1 pij [σ2
ij + (rij + γvj − v2

i)]. Since the
transition probability matrix P is a row stochastic matrix,
the largest eigenvalue of P is 1. Hence the coefficient matrix
A = I − γ2P does not have eigenvalue 0 because γ ∈ (0, 1)
in an infinite horizon MDP. Thus the inverse of square matrix
A exists, and σ = A−1b is the variance of states.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

382 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

Fig. 5. Graphical model of an input-driven MDP.

Definition 3 manifests the risky decision has a larger vari-
ance compared with its safer counterpart. Formally, for a risky
decision a′ w.r.t. its safer counterpart a at state s, The variance
of a risky decision σ2

ij
′
> σ2

ij , which incurs a positive increase
of b. When choosing risky action a′, the variance of all states
is calculated by:

σ′ = A−1(b + Δb) = A−1b + A−1Δb = σ + A−1Δb. (11)

We next prove that A−1 is a non-negative matrix, i.e. all
elements are non-negative values. The coefficient matrix A
of the system of variance equations is a strictly diagonally
dominant matrix, i.e. |Aii| >

∑
i�=j |Aij |. Specifically, for an

arbitrary row i in the coefficient matrix A,∑
i�=j

|Aij | = | − γ2
∑
i�=j

pij |

= | − γ2(1 − pii)|
< |1− γ2pii| = |Aii|. (12)

The last inequality is because γ ∈ (0, 1). For the coefficient
matrix A, ∀i 	= j, Aij < 0, hence A is a Z-matrix. Further-
more, A is a M-matrix since the real parts of eigenvalues of the
strictly diagonally dominant matrix A are positive. From [41]
we know that, the inverse matrix of M-matrix has all non-
negative elements, so we get ∀i ∈ [N], σ2

i ≤ σ′2
i , i.e. choosing

risky decision a′ increases the variance of MDP. �

C. Teacher-Student Model

The domain knowledge in networking applications, though
imperfect, entails us to find wrong or risky decisions. A more
robust learning system arises if these domain knowledge can
be integrated into the learning systems. Inspired by [15],
we adopt a novel Teacher-Student learning framework. The
main idea is that RL agents maximize the expected cumulative
return, as standard RL does, while minimizing the distance to
its teaching data provided by domain knowledge. As one of
the primary advantages, our learning framework is universal,
orthogonal to both DRL models and networking applications.

A neural network defines a conditional probability parame-
terized by weights θ that maps a certain system state to an
action. The DRL training updates θ iteratively to produce the

optimal actions of training instances. The student is modeled
as an MDP as described in Section II-A and the teacher
provides external knowledge to the student network. For the
state at which the teacher provides action advice, i.e. the
state pertinent to a wrong or risky decision, the RL agent
will receive an additional penalty l(st, at, a

′
t). This new loss

quantifies the difference between the student’s decision and the
teacher’s advice. The MDP under the guidance of a teacher can
be defined as (S,A, p, r, γ,D) with D containing the states
where the teacher provides advice. In this setting, the objective
of the student is given by

J(θ)

= Eπθ
[
∞∑

t=0

ηγtrt(st, at) + (1− η)1{st ∈ D}l(st, at, a
′
t)]

= Eπθ

× [η
∞∑

t=0

γtrt(st, at) + (1− η)
∞∑

t=0

1{st ∈ D}l(st, at, a
′
t)]

= ηEπθ
[
∞∑

t=0

γtrt(st, at)] + (1− η)Eπθ

× [
∞∑

t=0

1{st ∈ D}l(st, at, a
′
t)]

= ηvπθ
(s) + (1− η)lπθ

(s), (13)

where 1{st ∈ D} is an indicator function with its value equals
to 1 when a teacher provides advice at state st. η is a constant
in [0, 1] that controls the balance between maximizing the
expected cumulative reward and imitating the teaching data.

The subsequent challenges are who will play the role of
the teacher, and how the teacher’s action can be learned by
the student network. The teacher is a set of simple white-box
logic rules that are specified by domain-specific algorithms
or human engineers. In a word, he should be simple enough
and provide exact action advice to his neural network based
student. In this work, we choose the classical rule-based expert
methods as the teachers. Here we present several rules for
choosing an expert method: (i) white-box logic, i.e. the expert
method should be explainable; (ii) simple but effective; (3)
providing exact action advice to its neural network based stu-
dent. Meanwhile, we do not recommend to use the algorithms
based on prediction as the expert methods, since prediction
algorithms themselves are a kind of learning.

The overall Teacher-Student framework is illustrated in
Fig. 6. The student is the DRL system and the teacher is the
domain-specific algorithm. The main body of this framework
is still the interaction process between the agent and its
environment. There are three key modules that help learn
teaching data, including confidence check, reward shaping and
prioritized experience replay. Among them, the confidence
check module can help locate the states of wrong decisions
and risky decisions, reward reshaping stimulates the student
to learn teacher’s advice, and prioritized experience replay
achieves effective training when the number of teaching data
is not enough. We will give more details about these modules
in the following section.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 383

Fig. 6. Teacher-Student learning framework.

V. SYSTEM DESIGN

In this section, we describe three key components of the
proposed Teacher-Student framework, including confidence
check to automatically locate critical states, reward shaping
and prioritized experience replay to effectively incorporate
advice.

A. Confidence Check

• Challenge 1: When and how to give advice?
The training of DRL is an interactive process and each

iteration would generate a large amount of trajectory data.
Extracting wrong and risky decisions is undoubtedly a problem
of finding a needle in a haystack. The prerequisite is to identify
the critical states where DRL may not function properly.
• Solution 1: We tackle this challenge by using a process

of confidence check, during which the teacher provides advice
on a state if the corresponding value of the confidence metric
is less than a given threshold. The domain knowledge in
networking applications could help choose the confidence
metric and corresponding threshold value. More specifically,
the quality of experience (QoE) metric in video streaming
service directly reflects a user’s satisfaction of video percep-
tion. Since it is a real-time system, we can set the confidence
metric as a user’s instantaneous reward that captures the
QoE of each video chunk. For load balancing, we choose
two confidence metrics. One is the ratio of the incoming
job size to the size of the server’s queue and the other
is based on the estimated completion time, which will be
introduced in detail in section VI. However, as illustrated
in [42], the expert knowledge is heuristic and may be inaccu-
rate occasionally. Hence, this knowledge should be scrutinized
before being provided to the DRL agent. Our intuition is
that valid teaching advice a′ should lead to a higher cumu-
lative reward in the current learning sequence when com-
pared to the student’s intended action a. We called a critical
state s if

fc(s) < T, R(s, a′) > R(s, a),

where fc(·) is a function for calculating the value of the
confidence metric at a given state s ∈ S. T is the established
threshold for the corresponding confidence metric. R(s, a) is
the cumulative reward from taking action a at state s.

B. Reward Shaping

• Challenge 2: How can a student network learn advice?
Once the action advice is provided, our goal becomes to

embed them into the student DRL agent. A naïve approach is
that we directly use the action advice provided by the teacher
for training. The rationality behind it is to help the agent
explore the state and action space better. However, as shown
in Fig. 21, our experiments prove that this method is invalid.
We need a more efficient method to help the agent learn the
teaching data.
• Solution 2: From Equation (13) we can get

θJ(θ) = η
θ vπθ
(s) + (1− η)
θ lπθ

(s)
= ηEπθ

[Gt
θ log πθ(st, at)] + (1− η)
θ lπθ
(s),
(14)

where the last equality is because
θvπθ
(s) = Eπθ

[Gt
θ

log πθ(st, at)] and Gt = qπθ
(st, at) in [19]. In addition,

Gt can also be in the form of advantage function Gt =
qπθ(st, at) − b(s) in Actor-Critic, or in the form of Gt =
pθ(at|st)
pθ′ (at|st)

(qπθ
(st, at)− b(s)) in PPO.

The original Teacher-Student method in [15] sets the loss
function to the KL divergence of probability distribution
output by the students and that given by the teacher, in which
the probability distribution determines the classification result.
Similarly, for the RL agent with discrete actions, we can also
repress the teacher’s action advice in the form of one-hot
and calculate KL divergence. The problems are that: (i) this
approach is only suitable for discrete action space. Since
the output of the agent with continuous action is mean and
variance of a normal distribution, it is difficult for a teacher to
provide accurate values; (ii) The choice of the parameter η is
extremely important and sensitive if we calculate gradients of
two parts in objective function separately. This becomes worse
when neural networks are over-parameterized.

Reward shaping [43] is an important approach in RL
whereby additional rewards are used to guide the learning
agent for faster training speed. We propose a new shaping
method as a variant of reward shaping. Specifically, a new
updating function is used for DRL that injects networking
domain-specific rules in the student network by modifying
the value of Gt of the corresponding teaching data instead
of providing additional rewards. This approach could force
the student to learn teacher’s advice while not impacting the
update of other normal state action pairs. The new updating
function of DRL agent we use in the Teacher-Student approach
is:

θ ← θ + (1− 1{st ∈ D})δ
θ log πθ(st, at)Gt

+1{st ∈ D}δ
θ log πθ(st, a
′
t)Ft, (15)

here, the expression
θ log πθ(st, at) provides the direction
that updates the policy parameter θ so as to improve πθ(st, at).

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

384 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

Equation (15) takes a step towards this goal and the step
size also depends on how large the Gt and Ft are. The
shaping function F : S × A → R

+ is a real-valued function.
At a teaching state st, Ft ∝ (R′ − R) where R represents
the cumulative reward gained by performing student intended
action, and R′ is by using the teacher’s advised action with
R′ ≥ R. Note that in some special systems, we may not be
able to obtain R′ all the time. For example, obtaining R′

requires a step backward of the corresponding environment.
This can be achieved in the simulation but not in a real system.
In addition, for applications like job scheduling, such queuing
systems exist the problem of delayed reward, i.e. a single-
step reward signal does not reflect the improvement of the
system performance with respect to the teaching action, and
hence the accurate R′ is unknown. So we recommend choosing
this form Ft in streaming systems, since the instantaneous
reward can reflect the true performance of an action to some
extent. In other systems, it is chosen based on experience.
Nevertheless, the value of Ft is much more robust than the
value of η.

C. Prioritized Experience Replay

• Challenge 3: How to train the student network with little
teaching data effectively?

The amount of teaching data varies considerably across
different networking applications and different confidence
metrics. We need a more effective method to train the student
model with little teaching data available.
• Solution 3: We employ a prioritized experience replay

method in [44] to address this challenge. Experience replay
enables RL agents to remember and reuse the history data.
Authors in [44] show that prioritizing experience replay
data will make the learning more efficient. Since different
transitions (i.e. the state and advised action pairs) are not
equally useful, we therefore introduce the prioritized expe-
rience replay mechanism whose kernel component is the
criterion by which the importance of each transition is mea-
sured. The improved cumulative reward value is chosen to
measure the importance of different state-action pairs. Note
that our approach has a similar function with the TD-error [44]
while the latter is not suitable for policy-based training
algorithms which are most used by networking applications.
In addition, the stochastic method is implemented to ensure
a non-zero probability of sampling low priority transitions.
Formally, the probability of sampling transition i is given
by:

Pi =
pα

i∑
i pα

i

, (16)

where α is a positive exponent regarding the weight of priority.
Here, pi ∈ (0, 1] is the priority of transition i calculated
by pi = 1

rank(i) . Here, rank(i) is the order of transition i
among all the state-action pairs that are sorted ascendingly
by their importance on improving the cumulative reward
value (R′ −R).

The proposed method is suitable for (i) policy gradi-
ent based RL algorithms, (ii) the application where domain
knowledge can provide exact action advice and (iii) the

Algorithm 1 Leveraging Domain Knowledge for Robust DRL
Input: Pre-trained DNN, domain-specific Rules
Output: Policy πθ

1: Initialize teacher replay buffer H, student replay buffer U
2: for each iteration do
3: Δθ ← 0
4: for each episode do
5: Obtain st, at, fc(st)
6: if fc(st) < T then
7: Get valid action advice a′

t from teacher
8: Store transition (st, a

′
t, rt) in H

9: else
10: Store transition (st, at, rt) in U
11: end if
12: end for
13: Sampling teaching data H′ ∼ P (i) = pα

i /
∑

i pα
i , pi =

1/rank(i)
14: for each training data do
15: Compute weight change with shaping

Δθ ← (1− 1H′(st))δ
θ log πθ(st, at)Gt

+ 1H′(st)δ
θ log πθ(st, a
′
t)Ft

16: end for
17: Update weights θ ← θ + Δθ
18: end for

domain knowledge or the expert method is capable of
solving the robustness problem that we are interested
in.

D. Training

The training process is carried out in two stages, the
scratching and teaching phases. In the scratching phase, the
student interacts with the environment, continually generating
training data and using it to improve strategy iteratively, as the
standard training process of DRL. When the teaching phase
starts, the Algorithm 1 shows the pseudocode of teaching
phase, the teacher supervises the student performance and
provides advice in the form of an exact action decision when
the value of confidence metric fc(st) is less than a threshold.
Then the valid teacher advice data would be stored in the
teacher replay buffer. The training data also contains two parts,
including student experience data that is collected through
interacting and teaching data that is sampled from teaching
replay buffer based on the priorities, which are calculated
by how much valuable of each action advice. Note that the
teacher only participates in teaching phase, part of training
process, for the reasons: (i) reducing teaching cost, (ii) failing
to explore the action space effectively, thus falling into a local
optimum if integrating teacher’s advice data when the student
policy network is not mature. The iterations continue until the
“student” converges to a DNN that strikes a delicate balance
between the expected cumulative reward optimization and
imitating the behavior of a domain-specific logic. This process
makes the neural network more reliable while consistently
performing better than domain-specific algorithms on various
environment settings.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 385

VI. PERFORMANCE EVALUATION

A. Experimental Setup

We implement the proposed Teacher-Student framework
in three representative networking applications using DRL:
(i) Pensieve [6] for dynamic adaptive streaming over HTTP;
(ii) DeepLB for load balancing and (iii) Aurora [5] for TCP
congestion control. Unless specified explicitly, the parameter
configuration is in line with that of each original work.

1) Video Streaming: Consider a video with a length of
193 seconds that is encoded by H.264 codec at the set of
bitrates {300, 750, 1200, 1850, 2850, 4300}Kbps, and is seg-
mented into 48 chunks. We conduct experiments in both
simulated system and real system. In the simulated system,
the synthetic traces are generated by using a Markov model
in which each state is an average throughput ranging from 0.3
Mbps to 4.3 Mbps at the step size of 0.4 Mbps. The transi-
tion probability between different states follows a geometric
distribution. Each throughput value is drawn from a Gaussian
distribution parameterized with the current average throughput
and the uniformly distributed variance between 0.05 and 0.5.
In addition to the synthetic traces, we also use three real-world
datasets, including:

• FCC18. The bandwidth measurement results of broad-
band network in 2018 published by FCC.

• Norway. A 3G/HSDPA mobile dataset generated using
mobile devices in Norway that were streaming video via
bus, train, etc.

• HSR. A 4G bandwidth measurement results on
high-speed rails in 2018 with fluctuating bandwidths.

We directly use the further cleaned version of the above
datasets, which is provided by [6] and [26]. The QoE metric,
based on which the system performance is assessed, is calcu-
lated by:

QoE =
∑

n

q(Rn)− μ
∑

n

Tn −
∑

n

|q(Rn+1 − q(Rn)|,

(17)

where q(Rn) specifies video quality of chunk n, Tn is the
rebuffering time with μ the corresponding penalty, and the
last term |q(Rn+1 − q(Rn)| ensures playback smoothness by
providing penalty on changes of video quality. Since the QoE
metric is relatively subjective, we choose two forms of q(Rn)
in our following experiments. Specifically,

• QoElin : q(Rn) = Rn, Rn is the bitrate of chunk n,
used by MPC.

• QoElog : q(Rn) = log(Rn/Rmin), Rmin represents
the minimum bitrate of video chunks. QoElog implies
a diminishing marginal effect of user experience on the
video chunk bitrate.

Real System: We implement the Pensieve model and our
model in real-world dash.js system. Tensorflow.js is used to
store and load the trained model. In our setup, we run a virtual
machine on our notebook as the client and a host machine as
an IIS web server. The client keeps sending XMLHttpRequests
to the server to download the video chunks. The client video
player is a Google Chrome browser. We convert the trace files
to .bat files and use Dummynet at the client side to control

the network bandwidth so that a time varying bandwidth can
be emulated with realistic bandwidth traces. The video files
in our testing are directly from Pensieve, i.e. the same video
durations, bitrates and chunk sizes.

The teacher we use for Pensieve is the classical buffer-
based algorithm (BBA) proposed in [16]. BBA defines a
buffer size that is the difference between the downloading and
the playback progresses. A larger buffer size means a safer
situation against playback interruption. BBA selects the lowest
bitrate if the current buffer size is below 5s, selects the highest
bitrate if it is above 35s, and controls the requested bitrate
linearly if it is in between. Since BBA is widely adopted and
well-performed, it is selected as the teacher to guide a more
robust student neural network. Other ABR algorithms, such as
MPC [45] and BOLA [46], are essentially learning based or
prediction based algorithms, which are not suitable for the
teacher required for simple decision logic. The confidence
metric of the teacher is Pensieve’s instantaneous reward that
reflects the QoE of the last downloaded video chunk.

2) Load Balancing: In our experiment, the arrival of jobs
is a Poisson process with the mean inter-arrival time of
70 seconds. We consider the case of two types of jobs, the
small jobs and the large jobs. The request processing time of
small jobs is uniformed distributed between 20 ∼ 50 units, and
that of large jobs is also uniformed distributed but in the range
between 200 ∼ 300 units. For each incoming job, it is a small
one with probability 0.8 and is a large one with probability
0.2. We use Actor-Critic algorithm for RL training. The actor
network is a three-layer fully connected neural network. The
number of neurons from the input layer to the output layer is 3,
200, 128, 2 respectively. The output of action network is the
probability distribution that allocates an incoming job to the
candidate servers. The critic network has the same structure
as the action network, except that the number of neuron in the
output layer is 1. The output of critic network is an estimate
of the value function of the input state.

Two confidence metrics are selected in load balancing,
including:

• Confidence Metric A: The ratio of the incoming job size
to the size of server’s queue.

• Confidence Metric B: j+min(q1, q2, · · · , qk)−λ, where
j is the size of the incoming job, qi represents the queue
length of server i, and λ is the average arrival interval of
consecutive jobs.

Recall that the number of confidence values corresponding
to metric A is the same as the number of servers in the
system. Each time the RL agent chooses an action, the con-
fidence values are calculated with respect to each server. The
teacher provides action advice when the difference between
the confidence value of the selected server and the maximum
confidence value among all servers exceeds the given thresh-
old. We choose the shortest processing algorithm (SP) as the
teacher in load balancing application. SP calculates the total
length of each server queue, including the total size of jobs
waiting in the queue and the remaining size of the job currently
being processed, and schedules the incoming job to the server
corresponding to the shortest queue length.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

386 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

3) TCP Congestion Control: We implement TCP Aurora in
network simulator 3 (NS3) [47] that faithfully complies with
the emulation in Pantheon. The TCP DRL agent is retrained
using OpenAI Gym for NS3. We adopt a well-trained model
of TCP Aurora to be the start point of our retraining. This
model is trained using an event-driven simulator because the
interaction between the sender and the environment in the real
world is time-consuming, much larger than the computation
of gradients in the neural network. The simulator produces
single link traces with bandwidth between 100 packets per
second to 500 packets per second, round-trip propagation
delay between 100 ms and 1000 ms, queue size between
2 packets and 2981 packets and loss rate between 0 and 5%.
The sender is given an initial pacing rate between 30% and
150% of the link bandwidth. The DNN we used here has
2 hidden layers, with 32 neurons in each layer. The evaluation
of the pre-trained and retrained TCP Aurora is carried out
in NS3.

We use the classical BBR algorithm as the teacher whose
wisdom is to let the sending rate match the bandwidth delay
product (BDP). Though BBR is expected to operate at the
optimal usage of network bandwidth, it heavily relies on the
estimation of BDP. We hereby argue that the BDP estimate
is not an accurate value to tune the TCP sending rate, but
can tell whether the current sending rate is obviously wrong
or not. By reviewing the sequence of the states as well as
Aurora’s actions, we observe that Aurora is sometimes too
conservative when the bandwidth utilization is low, and is still
aggressive when the network is already congested. We set up
two thresholds, αmin and αmax. If the ratio of the current
sending rate over the available bandwidth is below αmin or
above αmax, Aurora will be endowed with an action suggested
by BBR. The choice of αmin and αmax is guided through
human experience. In our setting, we set αmin to 0.6 and
αmax to 1.2, and actually they are rather robust to a wide
range of configurations.

B. Experimental Results

1) Video Streaming: Since the real video playback is
extremely time-consuming (about 10 days for training a con-
verged model), we train the original Pensieve model in the
simulated system and test it in the real-world system. A well-
trained version of Pensieve is selected and we retrain it by
using teaching data provided by its BBA teacher. The instanta-
neous reward in each single step can serve to indicate the rough
quality of the agent’s decision. Therefore, we locate the risky
decisions based on the QoE value of the downloaded video
chunk where the confidence threshold is -20. Fig. 7 illustrates
the buffer size, requested bitrates, cumulative rebuffering time,
cumulative reward and throughput of the original Pensieve
(red solid lines) and the teacher guided Pensieve-TE (blue
dash lines) from top to bottom that evolves. One can observe
that the original Pensieve encounters a rebuffering around
5 seconds at time 73s, as shown in the area between the two
green vertical lines. Specifically, Pensieve requires a video
chunk with bitrate 750Kbps even if the current buffer size
is relatively small, resulting a rebuffer, suddenly dropped
reward (QoE) and poor throughput value. With the actions

Fig. 7. Comparison of Pensieve and Pensieve-TE.

Fig. 8. Percentiles of QoE values on synthetic dataset.

Fig. 9. Average performance during retraining.

advised by BBA, the teacher guided Pensieve-TE requires a
lower bitrate and avoids such a playback interruption.

Although Pensieve and Pensieve-TE have very close aver-
age QoE values, the risky decisions made by Pensieve
might have caused poor tail performance. Fig. 8 compares
their tail QoElin values in real system 300 times, where
x-coordinate represents different percentiles of the tails, and
y-coordinate displays the normalized average QoElin values
of these tails. Obviously, Pensieve-TE exhibits a much better
tail performance than Pensieve, especially at the 95th and 99th
percentiles. Specifically, the proposed method improves the
90%ile, 95%ile and 99%ile performance of QoElin by 7.6%,
8.8% and 10.7% respectively. We further conduct a set of
experiments to justify the causality that the improved QoE
of Pensieve-TE comes from the Teacher-Student framework,
rather than the insufficient training of the original Pensieve.
Fig. 9 shows that Pensieve-TE does not sacrifice the average
QoElin during the retraining epochs, compared with the

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 387

Fig. 10. 90th percentile reward of Pensieve and Pensieve-TE.

Fig. 11. 95th percentile reward of Pensieve and Pensieve-TE.

Fig. 12. Percentiles of QoElin values on FCC18.

original Pensieve. Fig. 10 and Fig. 11 demonstrate the average
QoElin value of the 90th and 95th percentiles during the
retraining. We observe that the tail performance of Pensieve-
TE gradually improves till convergence, and it is rather stable.
Fig. 12 compares tail QoElin values on FCC18 dataset,
it seems that Pensieve-TE does not perform well at first glance.
The reason is that FCC18 is a dataset with relatively large
bandwidth, i.e. pensieve is able to request video chunks with
high bitrate while keeping the buffer sufficient, hence the
BBA teacher is not necessary in this circumstance. However,
in Fig. 13 and Fig. 14 with relatively lower bandwidth, the
Pensieve-TE obviously improves tail QoElin values. As for the
QoElog metric, Fig. 15 - Fig. 18 demonstrate the performance
of Pensieve and Pensive-TE on four datasets, respectively.
Similarly, the Pensieve-TE achieves better tail performance
overall, especially on Norway dataset, where even average
performance has a significant improvement. Note that the
preference to tail or average performance depends on con-
crete environment. For example, when broadcasting important
meetings, we pay more attention to tail. While for daily
watching video, we care more about average performance.
The trade-off between different metrics needs to consider the
specific environment.

We also conduct experiments to compare the Teacher-
Student method (Pensieve-TE) with punishment reward
method (Pensieve-PU). In the punishment reward method,

Fig. 13. Percentiles of QoElin values on HSR.

Fig. 14. Percentiles of QoElin values on Norway.

Fig. 15. Percentiles of QoElog values on synthetic dataset.

we use the same confidence metric as Pensieve-TE to detect
wrong/risky decisions. Instead of providing teaching advice
and executing reward shaping afterward, Pensieve-PU pun-
ishes the DRL agent with a large negative reward at critical
states. Pensieve-PU is tested with QoElin metric across four
datasets used in this paper. Fig. 8, Fig. 12 and Fig. 14 manifest
that Pensieve-PU achieves nearly similar tail performance with
the original Pensieve. However, in Fig. 13, Pensieve-PU is
even inferior to Pensieve. We speculate that the punishment
reward might not be able to guide the DRL agent to the action
advised by the domain knowledge teacher, thus failing to
improve robustness. In fact, solely relying on the punishment
reward or the action advised through the domain knowledge
does not help the DRL agent to learn the appropriate action.
A synthetic approach of reward sharing and action advising is
thus preferred.

In Pensieve-TE, the confidence threshold is a hyper para-
meter. We next evaluate the sensitivity of Pensieve-TE on the
confidence threshold by modifying its value to −10, −15 and
−20 respectively, as shown in Fig. 19. The teachers’ advice
based on three different confidence thresholds are different,
but their outcomes on the tail performance remain to be
very close. Hence, we can reasonably claim that the Teacher-
Student framework is robust to the setting of the confidence
threshold in Pensieve.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

388 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

Fig. 16. Percentiles of QoElog values on FCC18.

Fig. 17. Percentiles of QoElog values on HSR.

Fig. 18. Percentiles of QoElog values on Norway.

Fig. 19. Using different threshold of confidence value.

Fig. 20. DeepLB training performance vs training epochs.

2) Load Balancing: We first train a DeepLB agent from
scratch and select a converged model for subsequent enhance-
ment. Fig. 20 shows that as the number of iterations increases,
DeepLB outperforms the heuristic algorithm gradually, which
manifests the rationality of using DRL for load balancing.

Fig. 21. The number of teaching data w and w/o reward shaping.

Fig. 22. DeepLB-TE retraining performance.

Fig. 23. DeepLB-TE vs. SP on confidence metric A.

Fig. 24. DeepLB-TE vs. SP on confidence metric B.

Note that the shaded area in Fig. 20 describes different
test sequences, not the large variance of model performance.
We denote by DeepLB-TE the teacher guided model using our
Teacher-Student framework. As shown in Fig. 21, x-coordinate
is the number of re-training iterations, and y-coordinate is the
number of states that the teacher needs to provide advice.
The red real curve is for the retrained agent with reward
shaping, and the blue dash curve is for that without reward
shaping. It is thus highlighted that as the training iteration
moves on, the DeepLB-TE with reward shaping relies less
and less on the teaching data, but the agent without reward
shaping still requires the similar amount of teaching data. This
set of experiments implies that the reward shaping is essential
to enable the RL agent to learn the advised actions, and to
update its own policy network accordingly. Besides, Fig. 22
describes that DeepLB-TE maintains the comparable average
job processing time as the original DeepLB.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 389

Fig. 25. Pacing rates of Aurora vs. Aurora-TE.

Fig. 26. Normalized TCP throughput.

The Teacher-Student framework improves the robustness of
the original DeepLB system. Specifically, we test 200 job
sequences and each sequence consists of 70 jobs. We compare
the RL agent with the shortest processing time algorithm (SP)
that serves as a teacher to provide action advice at critical
states. The original DeepLB, though more performant than
the rule-based SP in terms of the average job processing
time, is found that 42% of sequences have worse performance
than the rule-based SP. This indicates that the job processing
times in DeepLB have a large performance variance. Fig. 23
shows the CDF curves of the performance of DeepLB and
DeepLB-TE that are normalized by the performance of SP,
under the guidance of confidence metric A. With the guidance
of the teacher, DeepLB-TE successfully learns the teacher’s
advice and yields a smaller variance of job processing times.
The proposed method reduces the performance variance of
DeepLB by 37% when compared with SP. Hence, DeepLB-TE
is believed to be more robust and reliable than DeepLB and SP.
The similar results appear on confidence metric B, as shown
in Fig. 24.

3) TCP Congestion Control: We take a pre-trained TCP
Aurora model as the start point and retrain it using our
Teacher-Student framework in NS3. Fig. 25 shows the dif-
ferent pacing rate behavior of retrained model Aurora-TE
and the initial start point model Aurora. We create a single
link with 20 Mbps bandwidth and 40 ms round-trip prop-
agation delay. A UDP background flow with sending rate
of 8Mbps is always active. We set the initial pacing rate
to 5Mbps for both models. Experiments show that Aurora
needs about 1.5 seconds to catch up to the optimal pacing
rate. But after retraining with intervention of BBR, Aurora-
TE only takes 0.7 seconds, which is nearly 2x faster. This
improvement can help the TCP flow utilizes bandwidth more
efficiently, especially in the link with dynamically changing
bandwidth.

To evaluate whether our approach will harm the average
performance of TCP Aurora, we retrain three Aurora models

Fig. 27. Normalized TCP RTT.

Fig. 28. Comparison of different versions of Aurora.

using different retraining methods. After every 16 iterations,
for each model we run 55 traces with the same link parameters
as they were in retraining setting. Since the bandwidth and
latency of every trace are different, we use the normalized
throughput and the normalized round trip time (RTT) as
defined below to show the performance of models on each
trace. The normalized throughput is computed as the through-
put divided by the link bandwidth, and the normalized RTT is
computed as the fixed round trip propagation delay divided by
the RTT. They both should be smaller than 1, and the bigger
value means better performance.

Fig. 26 and Fig. 27 illustrate the average normalized
throughput and average normalized RTT of three Aurora mod-
els as the training iteration goes on. Aurora-TE with shaping
is retrained in our standard Teacher-Student approach. Aurora-
TE W/O shaping is also retrained in our Teacher-Student
approach but without Reward Shaping. Aurora is just retrained
using NS3 traces without teacher’s advice. Aurora-TE with
shaping achieves a more stable performance compared to the
start point model. We also find that Aurora-TE W/O shaping
behaves unstable and exhibits a worse RTT performance.
It signifies the importance of reward shaping in our Teacher-
Student approach.

Finally, to evaluate the scalability and robustness of our
retrained Aurora-TE, we consider a dynamic link whose band-
width varies to a new value randomly chosen between 10 Mbps
and 20 Mbps every 5 seconds. The link has a fixed round-trip
delay of 100ms. We run 11 times for each model and each
run lasts 20 seconds. The comprehensive results are shown in
Fig. 28. Aurora INIT represents the start point model or the
pre-trained model without any retraining. As expected, these
models have different trade-offs between RTT and bandwidth

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

390 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

utilization. Among them, Aurora-TE with shaping achieves the
best performance with 5% higher throughput and 6% lower
RTT than Aurora INIT.

VII. DISCUSSION

In this section, we discuss some open problems about the
proposed Teacher-Student framework.

A. Why Use Teacher-Student Framework Instead of
Reconsidering Reward Design Directly?

Though modifying reward is indeed a direct method, reward
design cannot eliminate the wrong and risky decisions. For the
wrong decision, take Pensieve, the video streaming system
selected in this paper, as an example. We aim at maximizing
the QoE (overall performance or average performance) of a
video session. The overall QoE of a video session can be
expressed as the sum of multiple QoEs of video chunks, and
the QoE of a single video chunk can be directly calculated
when the download is completed. It is natural that we use
the QoE of a downloaded video chunk as the instantaneous
reward. Such reward design is simple, direct, and accurate,
but the experimental results still show the existence of wrong
decisions, as shown in Fig. 7. The reason is that the pol-
icy of the Deep RL agent is essentially a neural network,
which is an approximation of the table strategy with inherent
approximation errors. Furthermore, the neural network itself
also has the typical problem of adversarial samples, which
can also lead to wrong decisions. Such problems can not be
solved by reward design. Therefore, we are more inclined to
use domain knowledge to locate and correct these abnormal
decisions.

The main problem solved in this paper is how to design
a general framework to integrate domain knowledge into
DRL-based agents to solve the problem of wrong and risky
decisions in neural network based policies. In the proposed
Teacher-Student framework, we only need domain knowl-
edge as a teacher to give action suggestions. However,
if domain knowledge is transformed into a crafted reward
design, it becomes a case-specific solution, which is not highly
versatile.

B. Why Not Integrate Average Performance, Tail Performance
and Performance Variance Into a Single Metric?

Performance metrics like variance or tail performance pose
a great challenge to single-step reward design. For average
performance, taking load balancing as an example, we can
set the reward to raver(st, at) = −(ti − ti−1) × n, where
n represents the number of active jobs in the system during
period [ti−1, ti]. Both the arrival and completion of jobs will
trigger a state transition. Suppose a load balancing agent needs
to allocate a sequence of N jobs, and the episode ends at
time step M , then T =

∑M
t=0 raver(st, at) is the overall

completion time of all the jobs in the sequence. Then T/N is
the average performance that we aim to optimize. However,
the variance is calculated in the unit of an episode which may
include hundreds or thousands of state-action pairs, making it

difficult to define the proper single-step reward rvar(st, at).
We can not get the variance through the accumulation of
single-step rewards. This problem also exists in optimizing
tail performance. Research works related to this topic often
design case-specific updating algorithms, which are opaque to
different applications. The proposed Teacher-Student Frame-
work may not be the best, while it is feasible and can be
applied to various networking applications.

If we define the goal as the weighted sum of average per-
formance, tail performance and performance variance, which
is formally αRaver +βRtail +γRvar. The optimization result
is likely towards a specific metric due to the unknown funda-
mental complex trade-off between different metrics. In addi-
tion, different networking systems, even the same networking
system under different environments, have different prefer-
ences on performance metrics. Thus choosing the weights of
different metrics becomes a case-specific problem. Based on
the above considerations, we recommend using the proposed
Teacher-Student method.

VIII. CONCLUSION

In this paper, we shed light on how the domain knowl-
edge in networking is leveraged to improve robustness of
DRL-based learning systems. We model these systems based
on input-driven MDP, provide theoretical analysis on the
system performance influenced by wrong and risky decisions.
A Teacher-Student learning framework is proposed in which
a domain-specific algorithm serves as the teacher to provide
advice to the student neural network. The evaluation results
show that: (1) the proposed method is suitable for both the
discrete and continuous action space; (2) the proposed method
successfully reduce the performance variance, improve tail
performance and enable a more stable DRL agent while
not sacrificing the average performance; (3) reward shaping
plays an important role when incorporating the teaching data
into student network, i.e. directly using action advice of
teacher cannot improve the robustness of student network;
(4) the proposed method is robust to different hyperparameter
settings.

REFERENCES

[1] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[2] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[3] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. 15th ACM Workshop
Hot Topics Netw., Nov. 2016, pp. 50–56.

[4] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing clus-
ters,” in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 270–288.

[5] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
Proc. Int. Conf. Mach. Learn. (ICML), 2019, pp. 3050–3059.

[6] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 197–210.

[7] Y. Guan, Y. Zhang, B. Wang, K. Bian, X. Xiong, and L. Song,
“PERM: Neural adaptive video streaming with multi-path transmis-
sion,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 1103–1112.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: ENABLING ROBUST DRL-DRIVEN NETWORKING SYSTEMS VIA TEACHER-STUDENT LEARNING 391

[8] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Stick:
A harmonious fusion of buffer-based and learning-based approach for
adaptive streaming,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
Jul. 2020, pp. 1967–1976.

[9] T. Huang, R.-X. Zhang, C. Zhou, and L. Sun, “QARC: Video quality
aware rate control for real-time video streaming based on deep reinforce-
ment learning,” in Proc. 26th ACM Int. Conf. Multimedia, Oct. 2018,
pp. 1208–1216.

[10] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in Proc. 16th ACM Workshop Hot Topics Networks (HotNets),
2017, pp. 185–191.

[11] X. You, X. Li, Y. Xu, H. Feng, J. Zhao, and H. Yan, “Toward packet
routing with fully-distributed multi-agent deep reinforcement learning,”
2019, arXiv:1905.03494.

[12] Y. Zheng, Z. Liu, X. You, Y. Xu, and J. Jiang, “Demystifying deep
learning in networking,” in Proc. 2nd Asia–Pacific Workshop Netw.
(APNet), 2018, pp. 1–7.

[13] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[14] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance reduction for reinforcement learning in input-driven environ-
ments,” 2018, arXiv:1807.02264.

[15] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing, “Harnessing deep neural
networks with logic rules,” in Proc. 54th Annu. Meeting Assoc. Comput.
Linguistics (Long Papers), vol. 1, 2016, pp. 2410–2420.

[16] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 187–198.

[17] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Netw. Congestion, vol. 14,
pp. 20–53, Dec. 2016.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[19] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approx-
imation,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2000,
pp. 1057–1063.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[21] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” 2015, arXiv:1509.06461.

[22] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2016, pp. 1928–1937.

[23] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operat. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[24] Y. Kazak, C. Barrett, G. Katz, and M. Schapira, “Verifying deep-RL-
driven systems,” in Proc. Workshop Netw. Meets AI ML (NetAI), 2019,
pp. 83–89.

[25] S. Emara, B. Li, and Y. Chen, “Eagle: Refining congestion control by
learning from the experts,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., Jul. 2020, pp. 676–685.

[26] Z. Meng et al., “Practically deploying heavyweight adaptive bitrate
algorithms with teacher-student learning,” IEEE/ACM Trans. Netw.,
vol. 29, no. 2, pp. 723–736, Apr. 2021.

[27] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting
deep learning-based networking systems,” in Proc. Annu. Conf. ACM
Special Interest Group Data Commun. Appl., Technol., Archit., Protocols
Comput. Commun., 2020, pp. 154–171.

[28] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A
pragmatic learning-based congestion control for the internet,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Archit., Protocols Comput. Commun., 2020, pp. 632–647.

[29] H. Mao, M. Schwarzkopf, H. He, and M. Alizadeh, “Towards safe online
reinforcement learning in computer systems,” in Proc. NeurIPS Mach.
Learn. Syst. Workshop, 2019.

[30] J. García and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–1480,
2015.

[31] R. Howard and J. Matheson, “Risk-sensitive Markov decision
processes,” Manage. Sci., vol. 18, no. 7, pp. 356–369, 1972.

[32] K.-J. Chung and M. J. Sobel, “Discounted MDP’s: Distribution functions
and exponential utility maximization,” SIAM J. Control Optim., vol. 25,
no. 1, pp. 49–62, Jan. 1987.

[33] L. Xia, “Mean–variance optimization of discrete time discounted
Markov decision processes,” Automatica, vol. 88, pp. 76–82,
Feb. 2018.

[34] E. Altman, Constrained Markov Decision Processes, vol. 7. Boca Raton,
FL, USA: CRC Press, 1999.

[35] D. Di Castro, A. Tamar, and S. Mannor, “Policy gradients with variance
related risk criteria,” 2012, arXiv:1206.6404.

[36] F. Maire and V. Bulitko, “Apprenticeship learning for initial value
functions in reinforcement learning,” in Planning and Learning in a
Priori Unknown or Dynamic Domains, p. 23, 2005.

[37] Y. Song, Y.-B. Li, C.-H. Li, and G.-F. Zhang, “An efficient initialization
approach of Q-learning for mobile robots,” Int. J. Control, Autom. Syst.,
vol. 10, no. 1, pp. 166–172, Feb. 2012.

[38] J. A. Clouse, On Integrating Apprentice Learning and Reinforcement
Learning. Amherst, MA, USA: Univ. Massachusetts Amherst, 1996.

[39] J. Garcia and F. Fernandez, “Safe exploration of state and action spaces
in reinforcement learning,” J. Artif. Intell. Res., vol. 45, pp. 515–564,
Dec. 2012.

[40] F. Benito, “Calculating the variance in Markov-processes with random
reward,” Trabajos de Estadistica Y de Investigacion Operativa, vol. 33,
no. 3, pp. 73–85, Oct. 1982.

[41] T. Fujimoto and R. Ranade, “Two characterizations of inverse-
positive matrices: The Hawkins–Simon condition and the Le Chatelier–
Braun principle,” Electron. J. Linear Algebra, vol. 11, pp. 59–65,
Jan. 2004.

[42] K. Efthymiadis and D. Kudenko, “Knowledge revision for reinforce-
ment learning with abstract MDPs,” in Proc. Int. Conf. Auto. Agents
Multiagent Syst. (AAMAS), 2015, pp. 763–770.

[43] A. Y. Ng et al., “Policy invariance under reward transformations: Theory
and application to reward shaping,” in Proc. ICML, vol. 99, Jun. 1999,
pp. 278–287.

[44] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015, arXiv:1511.05952.

[45] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in
Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 325–338.

[46] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” IEEE/ACM Trans. Netw., vol. 28,
no. 4, pp. 1698–1711, Aug. 2020.

[47] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM Demonstra-
tion, vol. 14, no. 14, p. 527, 2008.

Ying Zheng (Student Member, IEEE) received
the bachelor’s degree from Northeastern University,
China, in 2018. She is currently pursuing the Ph.D.
degree with the School of Computer Science, Fudan
University. Her research interests include machine
learning algorithms, mobile edge computing, and
networked systems.

Lixiang Lin is currently pursuing the master’s
degree with the Department of Electronic Engineer-
ing, Fudan University. His research interests include
video streaming and reinforcement learning.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

392 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 2022

Tianqi Zhang is currently pursuing the bache-
lor’s degree with the Department of Mathematics
and Applied Mathematics, Fudan University. His
research interests include multi-armed bandits, rein-
forcement learning algorithms, and their applications
in computer networks.

Haoyu Chen received the bachelor’s degree from
the Department of Electrical Engineering, Fudan
University, where he is currently pursuing the Ph.D.
degree with the School of Computer Science. His
research interests include networked systems and
distributed machine learning.

Qingyang Duan received the bachelor’s degree from
the School of Information Science and Technology,
Fudan University, in 2020, where he is currently
pursuing the master’s degree. His research interests
include computer network systems and distributed
machine learning.

Yuedong Xu received the B.S. degree from Anhui
University, the M.S. degree from the Huazhong
University of Science and Technology, and the
Ph.D. degree from The Chinese University of Hong
Kong. From 2009 to 2012, he was a Post-Doctoral
Researcher with INRIA Sophia Antipolis and Uni-
versité d’ Avignon, France. He is currently a Tenured
Associate Professor with the School of Information
Science and Technology, Fudan University, China.
He has published nearly 20 conferences and jour-
nals papers in premium vents, such as CoNEXT,

Mobisys, Mobihoc, Infocom, and IEEE/ACM ToN. His research interests
include performance evaluation, optimization, machine learning, economic
analysis of communication networks, and mobile computing.

Xin Wang received the B.S. degree in information
theory and the M.S. degree in communication and
electronic systems from Xidian University, China, in
1994 and 1997, respectively, and the Ph.D. degree in
computer science from Shizuoka University, Japan,
in 2002. In 1995 and 1998, he was involved in
China’s pioneering telecom-level video conferencing
systems and DVB-S systems with Huawei Inc.,
Shenzhen, China. He is currently a Professor at
Fudan University, Shanghai. His research interests
include quality of network service, next-generation

network architecture, mobile internet, and network coding. He is a member
of CCF and ACM.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 10,2024 at 10:14:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

